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Abstract – This paper presents an approach for tar-
get behavior tendency estimation (Receding, Approach-
ing). It is developed on the principles of Dezert-
Smarandache theory (DSmT) of plausible and para-
doxical reasoning applied to conventional sonar ampli-
tude measurements, which serve as an evidence for cor-
responding decision-making procedures. In some real
world situations it is difficult to finalize these proce-
dures, because of discrepancies in measurements inter-
pretation. In these cases the decision-making process
leads to conflicts, which cannot be resolved using the
well-known methods. The aim of the performed study
is to present and to approve the ability of DSmT to fi-
nalize successfully the decision-making process and to
assure awareness about the tendencies of target behav-
ior in case of discrepancies in measurements interpre-
tation. An example is provided to illustrate the bene-
fit of the proposed approach application in comparison
of fuzzy logic approach, and its ability to improve the
overall tracking performance.

Keywords: DSmT, Data Fusion, Estimation, Uncer-
tainty, Decision Making, Fuzzy Logic.

1 Introduction
Angle-only tracking systems based on sonars are

poorly developed topic due to a number of compli-
cations. These systems tend to be less precise than
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those based on active sensors, but one important
advantage is their vitality of being stealth. In a single
sensor case only direction of the target as an axis
is known, but the true target position and behavior
(approaching or descending) remain unknown. Re-
cently, the advances of computer technology lead to
sophisticated data processing methods, which improve
sonars capability. A number of developed tracking
techniques operating on angle-only measurement data
use additional information. In our case we utilize the
measured emitter’s amplitude values in consecutive
time moments. This information can be used to assess
tendencies in target’s behavior and, consequently, to
improve the overall angle-only tracking performance.

The aim of the performed study is to present and
to approve the ability of DSmT to finalize successfully
the decision-making process and to assure awareness
about the tendencies of target behavior in case of dis-
crepancies of angle-only measurements interpretation.
Results are presented and compared with the respec-
tive results, but drawn from the fuzzy logic approach.

2 Statement of the Problem

In order to track targets using angle-only measure-
ments it is necessary to compensate the unknown
ranges by using additional information received from
the emitter. In our case we suppose that in parallel
with measured local angle the observed target emits
constant signal, which is perceived by the sensor with
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a non-constant, but a varying strength (referred as am-
plitude). The augmented measurement vector at the
end of each time interval k = 1, 2, . . . is Z = {Zθ, ZA},
where: Zθ = θ + νθ denotes the measured local angle
with zero-mean Gaussian noise νθ = N (0, σνθ

) and
covariance σνθ

; ZA = A + νA denotes corresponding
signal’s amplitude value with zero-mean Gaussian
noise νA = N (0, σνA

) and covariance σνA
. The

variance of amplitude value is because of the cluttered
environment and the varying unknown distance to
the object, which is conditioned by possible different
modes of target behavior (approaching or descending).
Our goal is, utilizing received amplitude feature
measurement, to predict and to estimate the possible
target behavior tendencies.

Figure 1 represents a block diagram of the target’s
behavior tracking system. Regarding to the formulated
problem, we maintain two single-model-based Kalman-
like filters running in parallel using two models of pos-
sible target behavior - Approaching and Receding. At
initial time moment k the target is characterized by
the fuzzified amplitude state estimates according to the
models AApp(k|k) and ARec(k|k). The new observation
ZA(k +1) = A(k +1)+ νA(k +1) is assumed to be the
true value, corrupted by additive measurement noise.
It is fuzzified according to the chosen fuzzification in-
terface.

Figure 1: Block diagram of target’s behavior tracking
system

The tendency prediction approach is based on Zadeh
compositional rule. The updating procedure uses
Dezert-Smarandache combination rule to estimate tar-
get behavior states. Dezert-Smarandache Theory as-
sures a particular framework where the frame of dis-
cernment is exhaustive but not necessarily exclusive

and it deals successfully with rational, uncertain or
paradoxical data. In general this diagram resembles
the commonly used approaches in standard tracking
systems [1, 2], but the peculiarity consists in the im-
plemented particular approaches in the realizations of
the main steps.

3 Dezert-Smarandache Theory
The practical limitations of the Dempster-Shafer

Theory (DST) [10] come essentially from its inherent
following constraints, which are closely related with the
acceptance of the third exclude principle.

(C1) The DST considers a discrete and finite frame of
discernment Θ based on a set of exhaustive and
exclusive elementary elements θi.

(C2) - the bodies of evidence are assumed independent
and provide their own belief function on the pow-
erset 2Θ but with same interpretation for Θ.

In most of practical fusion applications based on the
DST, some ad-hoc or heuristic techniques must always
be added to the fusion process to manage or reduce the
possibility of high degree of conflict between sources.
Otherwise, the fusion results lead to a very dangerous
conclusions or cannot provide a reliable results at all.
To overcome these major limitations and drawbacks
relative to the Dempster’s rule of combination, a
recent theory of plausible and paradoxical reasoning
has been developed in [3, 11] and recently improved by
Dezert in [4]. In general Dezert-Smarandache Theory
(DSmT) can be considered as a generalization of the
DST.

The foundations of the DSmT is to refute the prin-
ciple of the third middle excluded and to allow the
possibility for paradoxes (partial overlapping) between
elements of the frame of discernment. The relaxation
of the constraint C1 can be justified since the elements
of Θ correspond generally only to imprecise/vague no-
tions or concepts so that no refinement for satisfying
C1 is actually possible (specially if natural language is
used to described elements of Θ). The DSmT refutes
also the excessive requirement imposed by C2 since it
seems clear that the frame is usually interpreted dif-
ferently by the distinct sources of evidence (experts).
Some subjectivity on the information provided by a
source of information is almost unavoidable, otherwise
this would assume, as within the DST, that all bodies
of evidence have an objective/universal (possibly un-
certain) interpretation or measure of the phenomena
under consideration which unfortunately rarely (never)
occurs in reality. Actually in most of cases, the sources
of evidence provide their beliefs about some hypothe-
ses only with respect to their own worlds of knowledge
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and experience without reference to the (inaccessible)
absolute truth of the space of possibilities. The DSmT
includes the possibility to deal with evidences arising
from different sources of information which don’t have
access to absolute interpretation of the elements θi un-
der consideration and can be interpreted as a general
and direct extension of probability theory and the DST
in the following sense. Let Θ = {θ1, θ2} be the sim-
plest frame of discernment involving only two elemen-
tary hypotheses (with no more additional assumptions
on θ1 and θ2), then

• the probability theory deals with basic probability
assignments m(.) ∈ [0, 1] such that

m(θ1) + m(θ2) = 1

• the DST deals with bba m(.) ∈ [0, 1] such that

m(θ1) + m(θ2) + m(θ1 ∪ θ2) = 1

• the DSmT theory deals with new bba m(.) ∈ [0, 1]
such that

m(θ1) + m(θ2) + m(θ1 ∪ θ2) + m(θ1 ∩ θ2) = 1

3.1 Hyper-Powerset and DSm rule

Let Θ = {θ1, . . . , θn} be a set of n elements which
cannot be precisely defined and separated so that no
refinement of Θ in a new larger set Θref of disjoint el-
ementary hypotheses is possible (we abandon here the
Shafer’s model). The hyper-powerset DΘ is defined
as the set of all composite propositions built from el-
ements of Θ with ∪ and ∩ (Θ generates DΘ under
operators ∪ and ∩) operators such that

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A, B ∈ DΘ, then A∩B ∈ DΘ and A∪B ∈ DΘ.

3. No other elements belong to DΘ, except those ob-
tained by using rules 1 or 2.

The cardinality of DΘ is majored by 22n

when
Card(Θ) =| Θ |= n. The generation of hyper-power
set DΘ is closely related with the famous Dedekind’s
problem on enumerating the set of monotone Boolean
functions. An algorithm for generating DΘ based on
isotone Boolean functions can be found in [5].

From a general frame of discernment Θ, we define a
map m(.) : DΘ → [0, 1] associated to a given source of
evidence B which can support paradoxical information,
as follows

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1

The quantity m(A) is called A’s generalized basic belief

assignment (gbba) or the generalized basic belief mass
for A. The belief and plausibility functions are defined
in almost the same manner as within the DST, i.e.

Bel(A) =
∑

B∈DΘ,B⊆A

m(B)

Pl(A) =
∑

B∈DΘ,B∩A 6=∅

m(B)

In the DSmT, it is not necessary to define the com-
plementary proposition Ā of a proposition A because
of the refutation of the third middle excluded princi-
ple. These definitions are compatible with the DST
ones when the sources of information become uncer-
tain but rational. The DSm rule of combination m(.) ,

[m1 ⊕m2](.) of two distinct (but potentially paradoxi-
cal) sources of evidences B1 and B2 over Θ with belief
functions Bel1(.) and Bel2(.) associated with general
information granules m1(.) and m2(.) is given by [4],

∀C ∈ DΘ, m(C) =
∑

A,B∈DΘ,A∩B=C

m1(A)m2(B) (1)

Since DΘ is closed under ∪ and ∩ operators, this new
rule of combination guarantees that m(.) : DΘ → [0, 1]
is a proper general information granule. This rule of
combination is commutative and associative and can
always be used for the fusion of paradoxical or ratio-
nal sources of information (bodies of evidence). It is
important to note that any fusion of sources of informa-
tion generates either uncertainties, paradoxes or more
generally both. The fusion process applied is justified
from the maximum entropy principle.

4 Approach for Behavior Ten-

dency Estimation
There are a few particular basic components in the

block diagram of target’s behavior tracking system.

4.1 Fuzzification Interface

A decisive variable in our task is the transmitted
from the emitter amplitude value A(k), received at con-
secutive time moments k = 1, 2, . . .. We use the fuzzifi-
cation interface (fig.2), that maps it into two fuzzy sets
defining two linguistic values in the frame of discern-
ments Θ = {S , Small, B , Big}. Their membership
functions are not arbitrarily chosen, but rely on the
inverse proportion dependency between the measured
amplitude value and corresponding distance to target.

The length of fuzzy sets’ bases provide design pa-
rameter that we calibrate for satisfactory performance.
These functions are tuned in conformity with the par-
ticular dependency A ≈ f(1/δD) known as a priori
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Figure 2: Fuzzification Interface

information The degree of overlap between adjacent
fuzzy sets reflects amplitude gradients in the bound-
ary points of specified distance intervals.

4.2 Behavior Models

In conformity with our task, fuzzy rules’ definition
is consistent with the tracking of amplitude changes
tendency in consecutive time moments k = 1, 2, . . ..
With regard to this a particular feature is that con-
sidered fuzzy rules have one and the same antecedents
and consequents. We define their meaning by using
the prespecified in paragraph 4.1 linguistic terms and
associated membership functions. We consider two es-
sential models of possible target behavior:

Approaching Target - it’s behavior is charac-
terized as a stable process of gradually amplitude
value increasing, i.e. the transition S → S →
B → B is held in a timely manner;

Receding Target - it’s behavior is characterized
as a stable process of gradually amplitude value
decreasing, i.e. the transition B → B → S → S is
held in a timely manner.

To comprise appropriately these models the follow-
ing rule bases have to be carried out:

Behavior Model 1: Approaching Target:

Rule 1: IF A(k) = S THEN A(k + 1) = S

Rule 2: IF A(k) = S THEN A(k + 1) = B

Rule 3: IF A(k) = B THEN A(k + 1) = B

Behavior Model 2: Receding Target:

Rule 1: IF A(k) = B THEN A(k + 1) = B

Rule 2: IF A(k) = B THEN A(k + 1) = S

Rule 3: IF A(k) = S THEN A(k + 1) = S

The inference schemes for these particular fuzzy
models are conditioned on the cornerstone principle of
each modeling process. It is proven [9], that minimum
and product inferences are the most widely used in
engineering applications, because they preserve cause
and effect. The models are derived as fuzzy graphs:

g = max
i

(µAi×Bi
(u, v)) = max

i
(µAi

(u) · µBi
(v))

in which µAi×Bi
(u, v) = µAi

(u) · µBi
(v) cor-

responds to the Larsen product operator for
the fuzzy conjunction, g = maxi(µAi×Bi

) is
the maximum for fuzzy union operator and
µB′(y) = maxxi

(min(µA′(xi), µA×B(xi, yi))) is
the Zadeh max-min operator for the composition rule.

The fuzzy graphs related to the two models are ob-
tained in conformity with the above described math-
ematical interpretations, by using the specified mem-
bership functions for linguistic terms Small, Big, and
taking for completeness into account all possible terms
in the hyper-Powerset DΘ = {S, B, S ∩ B, S ∪ B}:

k → k + 1 S S ∩ B B S ∪ B
S 1 0 1 0
S ∩ B 0 0 0 0
B 0.2 0 1 0
S ∪ B 0 0 0 0

Relation 1: Approaching Target

k → k + 1 S S ∩ B B S ∪ B
S 1 0 0.2 0
S ∩ B 0 0 0 0
B 1 0 1 0
S ∪ B 0 0 0 0

Relation 2: Receding Target

4.3 Amplitude State Prediction

At initial time moment k the target is character-
ized by the fuzzified amplitude state estimates accord-
ing to the models µAApp(k|k) and µARec(k|k). Us-
ing these fuzzy sets and applying the Zadeh max-min
compositional rule [9] to relation 1 and relation 2,
we obtain models’ conditioned amplitude state predic-
tions for time k + 1, i.e. µAApp(k + 1|k) is given by
max(min(µAApp(k|k), µApp(k → k+1))) and µARec(k+
1|k) by max(min(µARec(k|k), µRec(k → k + 1))).
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4.4 State Updating using DSmT

Dezert-Smarandache combinational rule is used here
for state updating. This procedure is realized on the
base of fusion between predicted states according to
the considered models (Approaching, Receding) and
the new measurement. Since DΘ is closed under ∪
and ∩ operators, to obey the requirements to guar-
antee that m(.) : DΘ 7→ [0, 1] is a proper general in-
formation granule, it is necessarily to transform fuzzy
membership functions representing the predicted state
and new measurement into mass functions. It is real-
ized through their normalization with respect to the
unity interval. Models’ conditioned amplitude state

prediction vector µ
App/Rec

pred (.) is obtained in the form:

[µ
A/R

pred(S), µ
A/R

pred(S ∩ B), µ
A/R

pred(B), µ
A/R

pred(S ∪ B)]

In general the terms, contained in µ
App/Rec

pred represent
the possibilities that the predicted amplitude behav-
ior belongs to the elements of hyper powerset DΘ and
there is no requirement to sum up to unity. In order
to use DSm combinational rule (1), it is necessary to

make normalization over µ
App/Rec

pred to obtain respective

gbba ∀C ∈ DΘ = {S, S ∩ B, B, S ∪ B}:

m
App/Rec

pred (C) =
µ

App/Rec

pred (C)
∑

A∈DΘ µ
App/Rec

pred (A)

The equivalent normalization has to be made for the
received new measurement before being fused with the
DSm rule of combination.

Example

Let consider at scan 3 the predicted vector for the

model Approaching µ
App/Rec

pred (4|3) with components
µ(S) = 0.6, µ(S ∩ B) = 0.15, µ(B) = 0.05 and
µ(S ∪ B) = 0.0, then the normalization constant
is K = 0.6 + 0.15 + 0.05 + 0.0 = 0.8 and after
normalization, one gets the resulting gbba

m
App/Rec

pred (S) =
0.6

K
= 0.75

m
App/Rec

pred (S ∩ B) =
0.15

K
= 0.1875

m
App/Rec

pred (B) =
0.05

K
= 0.0625

m
App/Rec

pred (S ∪ B) =
0.0

K
= 0.0

That way one can obtain m
App/Rec

pred (.) as a general
(normalized) information granule for the prediction of
the target’s behavior.

The target behavior estimate m
App/Rec

upd (.) at mea-

surement time is then obtained from m
App/Rec

pred (.) and
the amplitude belief assignment mmes(B) (built from
the normalization of the new fuzzyfied crisp amplitude
measurement received) by the DSm rule of combina-
tion, i.e.

m
App/Rec

upd (C) = [m
App/Rec

upd ⊕ mmes](C)

=
∑

A,B∈DΘ,A∩B=C

m
App/Rec

pred (A)mmes(B)

Since in contrast to the DST, DSmT uses a frame of
discernment, which is exhaustive, but in general case
not exclusive (as it is in our case for Θ = {S, B}), we
are able to take into account and to utilize the para-
doxical information S ∩B. This information relates to
the case, when the moving target resides in an over-
lapping intermediate region, when it is hard to predict
properly the tendency in its behavior. Thus the con-
flict management, modeled that way contributes to a
better understanding of the target motion and to as-
sure awareness about the behavior tendencies in such
cases.

5 Decision criterion
It is possible to build for each model M =

(A)pproaching, (R)eceding a subjective probability
measure PM

upd(.) from the bba mM
upd(.) with the gen-

eralized pignistic transformation (GPT) [4, 8] defined
∀A ∈ DΘ by,

PM
upd{A} =

∑

C∈DΘ|A∩C 6=∅

CMf (C ∩ A)

CMf (C)
mM

upd(C)

where CMf (X) denotes the DSm cardinal of proposi-
tion X for the free-DSm model Mf of the problem
under consideration here [6]. The decision criterion
for the estimation of correct model M is then based
on the evolution of the Pignistic entropies, associated
with updated amplitude states:

HM
pig(P

M
upd) , −

∑

A∈V

PM
upd{A} ln(PM

upd{A})

where V denotes the parts of the Venn diagram of the
model Mf . The estimation M̂(k) of correct model at
time k is given by the most informative model corre-
sponding to the smallest value of the pignistic entropy
between HA

pig(P
A
upd) and HR

pig(PR
upd).
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6 Simulation study
A non-real time simulation scenario is developed for

a single target trajectory (figure 3) in plane coordi-
nates X ,Y and for constant velocity movement. The
tracker is located at position (0km, 0km). The target’s
starting point and velocities are: (x0 = 5km, y0 =
10km), with following velocities during the two part
of the trajectory (ẋ = 100m/s, ẏ = 100m/s) and
(ẋ = −100m/s, ẏ = −100m/s)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3

4

5

6

7

8

9

10
x 10

4

X

Y

Target Motion

Figure 3: Target trajectory.
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Figure 4: Measurements statistics.

The time sampling rate is T = 10s. The dynamics
of target movement is modeled by equations:

x(k) = x(k − 1) + ẋT and y(k) = y(k − 1) + ẏT

The amplitude value ZA(k) = A(k) + νA(k) measured
by sonar is a random Gaussian distributed process
with mean A(k) = 1/D(k) and covariance σA(k).
D(k) =

√

x2(k) + y2(k) is the distance to the target,
(x(k), y(k)) is the corresponding vector of coordinates,
and νA(k) is the measurement noise. Each amplitude
value (true one and the corresponding noisy one)
received at each scan is processed according to the
block diagram (figure 1).
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Figure 5: Behavior tendencies (Noise-free measure-
ments).
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Figure 6: Behavior Tendencies (Noisy measurements).

Figures 5 and 6 show the results obtained during
the whole motion of the observed target. Figure 5
represents the case when the measurements are with-
out noise, i.e. Z(k) = A(k). Figure 6 represents the
case when measured amplitude values are corrupted
by noise. In general the presented graphics show the
estimated tendencies in target behavior, which are de-
scribed via the scan consecutive transitions of the esti-
mated amplitude states. Figure 7 represents the evolu-
tion of pignistic entropies associated with updated am-
plitude states for the Approaching and Receding mod-
els in case of noisy measurements (the figure for the
noise-free measurement is similar and is not included
here due to space limitation). It illustrates the decision
criterion used to choose the correct model.

If one takes a look at the figure 5 and figure 7, it can
be seen that between scans 1st and 15th the target
motion is supported by Approaching model, because
that mode corresponds to the minimum entropies
values, which means that it is the more informative
one. The Approaching model is dominant, because
the measured amplitude values during these scans
stable reside in the state Big, as it is obvious from
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Figure 7: Evolution of the pignistic entropy for up-
dated states.

the fuzzification interface (fig.2). In the same time,
Receding model supports the overlapping region S∩B,
which is transition towards the state Small. Between
scans 16th and 90th the Receding model becomes
dominant since the variations of amplitude changes are
minimal and their amplitude values stable support the
state Small. During these scans Approaching model
has a small reaction to the measurement statistics,
keeping paradoxical state S ∩ B.What it is interesting
and important to note is that between scans 16th and
30th the difference of entropies between Approaching
and Receding models increases, a fact, that makes
us to be increasingly sure that the Receding mode is
becoming dominant. Then, between scans 75th and
90th the difference of these entropies is decreasing,
which means that we are less and less sure, that
Receding model remain still dominant. After switching
scan 91th the Approaching model becomes dominant
one, until scan 100th. In general the reaction of the
considered models to the changes of target motion is
not immediate, because the whole behavior estimation
procedure deals with vague propositions Small, Big,
and sequences of amplitude values at consecutive
scans often reside stable in one and the same states.

Comparing the results in fig. 6 with the results in fig-
ure 5, it is evident, that although some disorder in the
estimated behavior tendencies, one can make approxi-
mately correct decision due to the possibility of DSmT
to deal with conflicts and that way to contribute for a
better understanding of target behavior and evaluation
of the threat.

7 Comparison between DSm

and Fuzzy Logic Approaches
The objective of this paragraph is to compare the

results received by using DSm theory and respective

results but drawn from the Fuzzy Logic Approach
(FLA) [9, 12, 13], applied on the same simulation
scenario. The main differences between the two ap-
proaches consist in the domain of considered working
propositions and in the updating procedure as well. In
present work, we use DSm combination rule to fuse the
predicted state and the new measurement to obtain
the estimated behavior states, while in the fuzzy
approach state estimates are obtained through a fuzzy
set intersection between these entities. It is evident
from the results, shown in figures 8 and 9, that here
we deal with only two propositions Θ = {Small, Big}.
There is no way to examine the behavior tendencies
in the overlapping region, keeping into considerations
every one of possible target’s movements: from S ∩ B
to B or from S ∩ B to S.
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Figure 8: Behavior Tendencies (NoisyFree Measure-
ments) drawn from Fuzzy Logic Approach.
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Figure 9: Behavior Tendencies (Noisy Case) without
Noise Reduction drawn from Fuzzy Logic Approach.

Figure 8 shows the noise-free measurement case. It
could be seen that between scan 10 and 90 target mo-
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tion is supported by the correct for that case Receding
model, while Approaching one has no reaction at all.
If we compare corresponding figure 5 (DSm case) and
present figure 8, we can see, that in the case of DSm ap-
proach Receding model reacts more adequately to the
true target tendency , because there is a possibility to
deal with the real situation – the tendency of the target
to make a movement from B to the overlapping region
B ∩ S. In the FLA case there is no such opportunity
and because of that between scan 1st and 10th Reced-
ing model has no reaction to the real target movement
towards the B ∩ S. Figure 9 represents the case when
the measured amplitude values are corrupted by noise.
It is difficult to make proper decision about the be-
havior tendency, especially after scan 90th., because
it is obvious, that here the model Approaching coin-
cide with the model Receding. In order to reduce the
influence of measurement noise over tendency estima-
tion, an additional noise reduction procedure has to be
applied to make the measurements more informative.
Its application improves the overall process of behav-
ior estimation. Taking in mind all the results drawn
from DSmT and FLA application, we can make the
following considerations:

• DSmT and FLA deal with a frame of discernment,
based in general on imprecise/vague notions and
concepts Θ = {S, B}. But DSmT allows us to deal
also with rational, uncertain or paradoxical data,
operating on the hyper powerset DΘ = {S, S ∩
B, B, S∪B}. In our particular application it gives
us an opportunity for flexible tracking the changes
of possible target behavior during the overlapping
region S ∩ B.

• DSmT based behavior estimates can be charac-
terized as a noise resistant, while FLA uses an
additional noise reduction procedure to produce
‘smoothed’ behavior estimates.

8 Conclusions

An approach for estimating the tendency of tar-
get behavior was proposed. It is based on Dezert-
Smarandache theory applied to conventional sonar
measurements. It was evaluated using computer sim-
ulation. The provided example illustrates the bene-
fits of DSm approach in comparison of fuzzy logic one.
Dealing simultaneously with rational, uncertain and
paradoxical data, an opportunity for flexible and ro-
bust reasoning is realized, overcoming the described
limitations relative to the fuzzy logic approach. It is
presented and approved the ability of DSmT to en-
sure reasonable and successful decision-making proce-
dure about the tendencies of target behavior in case of

discrepancies of angle-only measurements interpreta-
tion. The proposed approach yields confident picture
for complex and ill-defined engineering problems.
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