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Abstract. This paper is concerned with the problem of 
associating data from multiple sensors (radars). A new 
data association approach using Hough transform is 
proposed for rectili near track initiation. It is intended 
to overcome the combinatorial explosion and the 
synchronisation problems arising in the multitarget 
multi sensor case. 
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1. Introduction 
The data association (DA) problem is of 
significant importance in the process of building up 
multiple sensor systems for tracking multiple 
targets. DA problem can be mathematically 
formulated as a well studied assignment (or 
matched) problem. In practical implementation of 
tracking systems, however, some drawbacks arise, 
the most important of which is the so-called 
“combinatorial explosion”. 

The 2D assignment problem can be easily 
solved by using any of the existing algorithms. In 
more general case, when the number of sensors S  
exceeds two ( S ≥ 3 ) the corresponding assignment 
problem is known to be NP-hard. Many works are 
devoted to overcome this diff iculty. They make 
trade-off with optimali ty achieving in the same 
time considerable speed up of algorithm processing 
[1]. The most general solution of this problem is 
proposed in [2]. The designed there sub-optimal 
algorithm provides at any stage an estimation of 
how close it is to the optimal solution. 

Another important drawback concerns the 
synchronisation of the incoming data. In some 
works the authors accept that all i tems in the 
particular list of data are detected at one and the 
same time [1] and in another works in the 
algorithms proposed there are included techniques 

reducing received data items at one and the same 
instance of time. 

Special attention deserves the case connected 
with dense target scenario and heavy clutter when 
most of the known algorithms reduce dramatically 
their eff iciency. 

A new multisensor DA approach is presented 
here using Hough transform (HT). The designed 
HT algorithm (HTA) overcomes the mentioned 
above problems. It presumes that S  two-
dimensional track-while-scan radars observe 
simultaneously area of common coverage (referred 
to as Feature space, FS). All radar measurements 
are sent to a common processing centre. By using a 
specific equation HTA maps each arriving 
measurement in HT space (referred to as 
Parameter space, PS) and applying particular 
processing techniques detects the tracks. 

In the process of designing the multisensor 
HTA a few sub-problems are discussed and some 
solutions are proposed in this paper: an useful 
equation for measurements transformation from 
local polar FS co-ordinate system to global PS is 
proposed (Section 2); a two level discrete structure 
of PS is proposed and appropriate expressions are 
derived to connect the radar accuracy with the 
discretization steps (Section 3 and 4). At last, an 
expression is proposed to define the track detection 
threshold (Section 5). Results from a Monte Carlo 
simulation are given for algorithm eff iciency 
confirmation (Section 6). 

2. Hough Transform for Multisensor 
Track Detection 
The HT method is based on the fact that, all points 
along a straight line positioned in FS can be 
mapped in a single point in PS [3, 4] (Fig. 1). 



  

 
Fig. 1 Sensors and track positions 

HTA maps each arbitrarily chosen point from 
the FS to a curve in the PS. If a set of points in the 
FS lies along a straight line the corresponding 
curves are intersected in a single point in the PS. 
They form a peak of ‘ votes’ . The key advantage of 
HT is replacing the diff icult problem of feature 
extraction in the FS by more easy problem of 
determining of peak location in the PS. 

Consider a set of measurements originating 
from a target moving along straight-line. In the FS, 
the i -th measurement ( , )rJ

i
J
iα  (range-azimuth, 

r rJ
i

J∈[ , ]max0 , α J
i o∈[ , ]0 360 ) arrives in the local 

polar co-ordinate system r OJ J Jα  of the J -th 

radar ( J S=1, ). In absolute co-ordinate system 
rOα  each sensor has known fixed polar co-
ordinates ( , )r J J0 0α  ( r J0 0≥ , α0 0 360J

o∈[ , ]). All 

co-ordinate systems are oriented to the "North". 
The earth curvature is neglected. 

In this case the local trajectory parameters are 
( , )ρ θJ  (local trajectory shift - trajectory heading). 

The respective global parameters are ( , )ρ θ  

(absolute trajectory shift, trajectory heading), 
where θ ∈[ , ]0 360o  and ρ ρk ∈[ , ]max0 . The 

following equation: 
ρ θ α θ α= − + −r rJ

i
J
i

J Jsin( ) sin( )0 0            (1) 

is proposed to map these measurements into the 
global PS. The first term ρ θ αJ J

i
J
ir= −sin( )  maps 

the measurements from local FS into local PS. The 
second term shifts them to the global PS. 

When the trajectory parameters ( , )ρ θ  are 

known and there are no measurement errors, the 
mapped measurements from all sensors vote in a 
single point and can be accumulated in a single-
point accumulator. After that it is easy to apply 
some decision rule and to detect the track. 

In the real implementation case the parameters 
( , )ρ θ  are unknown. The search is performed in the 

frame of a fixed discrete set of standard headings 
θ θl

ol d= ∈[ , ]0 360 , l N= 0, θ  and standard shifts 

[ ]ρ ρ ρm md= ∈ 0, max , m N= 0, ρ . Here, dθ  and dρ  

are the primary steps of the HTA angular and shift 
grids, N do

θ θ= 360  and N dρ ρ ρ= max . By using 

(1) HTA maps each measurement ( , )rJ
i

J
iα  from 

FS in a curve in PS. Consecutively substituting the 
increasing values of θl  HTA computes the 

corresponding shifts ρ ρ α θl
i

J
i

J
i

lr= ( , , ) , l N= 0, θ . 

In this way the single measurement ( , )rJ
i

J
iα  is 

mapped in a set of votes lying on curve. If a 
discrete heading coincides with the real one 
(θ θl = ) the peak of votes (obtained as a result of 

curves intersection) will locate the shift 
corresponding to the real trajectory shift (Fig. 2). 

 
Fig. 2 Peak location 

If there is no coincidence between the real and 
any standard trajectory, or if there are 
measurement errors, the HTA will detect (with 
some probabili ty) the standard trajectory with the 
closest shift and heading instead the real one. 

To collect a suff icient number of votes for track 
detection the mentioned above accumulator point 
has to be extended to an accumulator area with 
appropriate sizes ∆ρ  and ∆θ . This extension of 

the accumulator sizes both increases the 
probabili ty of successful measurement voting PG , 

and increases the number of the false alarms (FA) 
voting in it. As a result, the number of the standard 
trajectories is reduced, diminishing the HTA 
resolving abili ties. The optimal solution is to find 
the minimal accumulator sizes providing a 
predefined probabili ty PG . For this purpose the 

pdf’s of the measurement errors in PS will be 
identified below. 

3. Accumulator Size Definition 
In the modern radar systems the sensor’s 
positioning and orientation errors are negligible. 



  

The measurement errors δ rJ
i  and δα J

i  can be 

expressed as measurement oscill ations around the 
considered trajectory and the measurements will li e 
not on a line, but in a strip. We assume a normal 
distribution for δ rJ

i  and δα J
i  [4], i.e. : 

δ σr NJ
i

r
J~ ( , )0 , δα σαJ

i JN~ ( , )0 ; [ ]E rJ
i

J
iδ δα⋅ = 0,  

where E[.] is the operator of mathematical 

expectation and σ r
J , σα

J  are the standard 

deviations of the measurement errors. The sensors 
can have different accuracy. 

The strip defined by the ‘maximal’ values of 
these errors has complicated shape depending on 
the measurement coordinates (Fig. 3). 

 
Fig.3 The HTA strip shape 

An appropriate experiment (10 000 independent 
Monte Carlo simulation runs) shows the shapes 
and the sizes of the real measurement error 
distributions around a fixed known trajectory 
(Figs. 4-6) for radars with r kmmax = 100 . 

 
Fig.4 σr km= 2 ,σα = 0o .   Fig.5 σr = 0,σα =15. o . 

 
Fig. 6 σr km= 2 ,σα =15. o . 

Single sensor case 
We assume that there exists a standard HTA 

trajectory completely coinciding with that one we 

observe ( )ρ ρ θ θL
J

L= =,  and respective HTA 

accumulator (with sizes ∆ρ , ∆θ ) is positioned in 

the J -th local PS at the point ( , )ρ θL
J

L . The 

oscill ations δ rJ
i  and δα J

i  in FS cause oscill ations 

δ ρJ
i  and δθ J

i  in the PS. 

The first term of the equation (1) and its inverse 

form: θ α ρ= +




J

i J

J
ir

arcsin  are extended in Taylor 

series up to first-order terms around the standard 
trajectory. The errors of interest can be expressed 
as: 

( ) ( )δ ρ δ ρ δ ρδ δαJ
i

J
i

rJ
i

J
i

J
i= + , 

( )δρ δα θ αδαJ
i

J
i

J
i

J
i

J
ir= − −cos( ) , 

( )δρ δ θ αδJ
i

rJ
i

J
i

J
ir= −sin( ) ; 

( ) ( )δθ δθ δθδ δαJ
i

J
i

rJ
i

J
i

J
i= + , 

( )δθ δαδαJ
i

J
i

J
i= , 

( )δθ
δ

θ αδJ
i

rJ
i J

i

J
i J

ir

r
tg= − −( ) . 

The angular oscill ations, caused by the error 

( )δθ δ rJ
i  is due to its behaviour close to the limits 

( ) .θ α π− → ±J
i 05 : 

( ) ( ){ }lim
.θ α π

δδθ
− →±

= ±∞
J
i

rJ
i

05
. To 

cover such oscill ations it is necessary to set the 
angular accumulator size ∆θ π= . Therefore this 
error is ignored while choose ∆θ . The resulting 
error δ θ J

i  becomes measurement independent: 

( )δθ δα σαJ
i

J
i JN≈ ~ ,0 . 

The unavoidable drawback of this 
simpli fication is the measurements interchange 
between accumulators with equal shifts and 
neighbouring headings . 

Another important feature of the considered 
errors is the measurement dependence of the error 
δ ρ J

i . It is a sum of two independent errors with 

Gaussian pdf’s. The first one ( )δρ δαJ
i

J
i  directly 

depends on the range r rJ
i

J≤ max . The errors 

( )δρ δJ
i

rJ
i  and ( )δρ δαJ

i
J
i  depend on the relative 

measurement angular position when 

( ) .θ α π− → ±J
i 05 .  

Consider a strip with a shape similar to that one 
presented in Fig. 3. Such complicated shape is 
near-optimal in the considered single sensor case: it 
requires minimal surface to cover the area of 
measurement oscill ations, when the desired 
probabili ty PG  is fixed beforehand. In this way it 

prevents the redundant increasing of the FA 



  

number in the strip and also undesired reduction of 
the HTA resolving abili ties. Such a strip can be 
constructed as a sum of two sub-strips. The first 
sub-strip approximates the strip shape of the error 
δ rJ

i . It is set with constant width δ σr kJ r
Jmax =  and 

its shape is rectangular. The size and shape of the 
second sub-strip concerns the error δ α J

i  and it is 

approximated by a sub-strip with the same shape 
and the ‘maximal’ size of δ α σαJ

Jkmax = . 

The respective accumulator sizes are 

( )∆ ∆ρ ρ θ α σ σαJ J J
i

J
i

r
J Jr k k= −, , , , and ( )∆ ∆θ θ σαJ J

Jk= . 

The event that ‘measurement votes in this strip’ is 

a sum of two independent events: ‘ δ σr kJ
i

r
J≤ ’ and 

‘ δα σαJ
i Jk≤ ’ . The probabili ties P

G
J

* , PG
Jρ , and 

P
G

J
*

θ  corresponding to these events are connected 

by the relation: 

{ } { } ( )P P P P r k P k k
G
J

G G J
i

r
J

J
i JJ J

* *≥ = ≤ ≤ =ρ θ
αδ σ δα σ 4 0

2Φ . 

The dimensions of every strip with complicated 
shape concerning the trajectory with parameters 
( , )ρ θ  depend on the size ( , )∆ ∆ρ θ  of 

corresponding accumulator. The strip with 
complicated shape can be represented as sum of n  
rectangular strips corresponding to sub-
accumulators ( , ), ,θ ρi j ni i i= 1  with size ( , )∆ρ δθ , if 

∆θ δθ= n . Let consider a trajectory ( , )ρ θ  in the 

radar surveill ance volume. In this case the 
parameters of the nearest accumulator can be 

defined as: ( )θ δθ θ
δθi round

1

05= −





. ∆θ ; 

θ θ δθi ik
k= + −

1
1( ) ; ρ δρ ρ

δρj round= 



 .  

Another possible strip shape can be obtained 
through rough rectangular strip shape 
approximation. Constant accumulator sizes ∆ρJ  

and ∆θ J  will correspond to such strip shape. For 

providing successful vote of measurements 

arriving from far ranges, the error ( )δρ δαJ
i

J
i  is 

approximated by the equation: 
δρ δρ δα δJ J

i
J J J

i
J
ir r rmax max max( )≈ ≥ + . 

The ‘new’ error is a sum of two independent 
errors with Gaussian pdf’s, but it is measurement 
independent, so the accumulator sizes can be 

chosen constant: ( )∆ ∆ρ ρ σ σα αJ J J r
J Jr k k= max , ,  and 

( )∆ ∆θ θ σα αJ J
Jk= . This new strip contains the 

‘optimal’ one (in the worst case, when ρ = 0 , its 

surface can be twice greater) and will respectively 
accumulate greater number of FA. 

The probabili ty PG , can be expressed as: 

( )P P P kG G G
J J= >ρ θ 4 0

2Φ ,        where 

{ } ( )P P r r k k kG J
i

J
J

J
i JJρ

α αδ ρ σ δα σ= ≤ − ≤ >| | , | |max∆ Φ2 0 . 

Multisensor case 

If set k = 3 and chose { }σ σr
J S

r
J=

=
max

,1
, 

{ }σ σα α=
=

max
,J S

J

1
 and { }r r

J S
Jmax

,

maxmax=
=1

, all 

accumulators (and all FS strips) will have equal 
sizes: ∆ ∆θ θJ const= =  and ∆ ∆ρ ρJ const= = . 

Finally, it will be guaranteed that each 
measurement will vote in the accumulator with 
following nearly equal high probabili ties: 

P PG G
J

o≥ ≥ >4 3 09942Φ ( ) . . 

In the process of transformation from the local 
sensor’s PS to the common PS the accumulators 
corresponding to one and the same trajectory have 
to be matched. This can be done exactly for only 
these sensor’s sub-accumulators, which parameters 
coincide with the parameters of accumulators and 

are equal to ( )θ δθ θ
δθim

round= . For other sub-

accumulators the matching is not exact. As a result 
the probabili ty PG  reduces insignificantly.

4. Parameter Space Grid Definition 
Let a coarse global accumulator grid, with 
constant steps ∆ρ  and ∆θ  is defined in the PS and 

let consider trajectory with arbitrary chosen, 
unknown parameters ( )ρ θ, . Consecutively 

positioning an accumulator with considered above 
sizes on each of the grid nodes, the closest 
accumulator position (positions) can be found. The 
worst case is when the trajectory shift and heading 
lie exactly on the border between neighbouring 
standard headings and shifts. Obviously an 
accumulator overlapping has to be applied to 
provide fixed probabili ty PG . 

To provide a high probabili ty PG  a global fine 

grid, with grid steps d l lρ ρ ρ ρ= − <+1 ∆  and 

d n nθ θ θ θ= − <+1 ∆  ( l l∈[ , ]max1  and n n∈[ , ]max1 ) 

is introduced. The closest accumulator’s position 



  

( )ρ θcl cl,  to the real trajectory position ( )ρ θJ ,  

satisfies the inequalities: 

( )0 05≤ − = − ≤ <
∈

ρ ρ ρ ρ ρ ρcl
l l

l dmin .
[1, ]max

∆ , 

( )0 05≤ − = − ≤ <
∈

θ θ θ θ θ θcl
n n

l dmin .
[1, ]max

∆ . 

The obtained minimal probabilities PG  are: 

P P
d

P
d

G G
r

G>














ρ θ

α

ρ
σ

θ
σ2 2

, 

P
d d d

G
r r r

ρ ρ
σ

ρ
σ

ρ
σ2

3
2

3
20 0







 ≥ −







 + +







Φ Φ , 

P
d d d

G
θ

α α α

θ
σ

θ
σ

θ
σ2

3
2

3
20 0







 = −







 + +







Φ Φ . 

It has to be noted that the smaller grid steps 
increase the probability PG  (see Fig. 4 bellow), 

but increase the computational load, too. 

5. Detection Threshold Definition 
Let us introduce the probabilities PRTD

J  and PFTD
J  

for the J -th sensor. The probability ( )P M NRTD
J

J J,  is 

determined as probability that exactly M J  

measurements will be obtained in a fixed number of 
consecutive complete scans N J : 

( ) ( )P M N
N

M
P P P PRTD

J
J J

J

J
G D

J M

G D
J N MJ J J

( , ) =






 −

−
1 . 

The probability P M NFTD
J

J J( , )  is determined as 

probability to obtain at least one FA per scan in the 
considered strip in exactly M J  complete scans from 

N J  consecutive complete scans: 

( ) ( ) ( )
P M N

N

M
P PFTD

J
J J

J

J
fa
J

M

fa
J

N MJ J J J J

( , ) =






 − −





−
−

1 1 1
µ µ , 

where the probabilities P PD
J

D
M≠  and P Pfa

J
fa
M≠  (if 

M J≠ ) are considered as constants and where 
( )µ µ ρ θ ρJ J= , , ∆  is the number of elementary 

volumes in the considered strip.  
In the multisensor case, the probability of true 

track detection PRTD  is determined as probability that 

2 ≤ ≤M N  measurements will be obtained in 

2
1

≤ =
=

∑N N J

J

S

 consecutive complete scans in a strip 

with fixed sizes: 

P P i NRTD i RTD
J

J J
i

N

J

S

J

J

J

=
==

∑∏ ν ( , )
01

, 

where νi J
= 1, if iJ

J

S

=
∑ ≥

1

�
 and νi J

= 0 , in the 

opposite case. 
The probability of false track detection PFTD  is 

determined as probability to obtain at least one FA per 
scan in M ≥ 2  complete scans from N ≥ 2  
consecutive complete scans in the considered strip: 

P P i NFTD i FTD
J

J J
i

N

J

S

J

J

J

=
==

∑∏ ν ( , )
01

. 

These probabilities do not take into account the 
measurements signal parameters. 

The sensors can have different sampling 
intervals TJ . The contributed number of scans N J  

by each sensor can be defined just after the 
common number of scan N  is obtained. 

By using the Neyman-Pearson criterion, the 
optimal threshold providing maximal probability 
PRTD  for fixed PFTD  can be found in real time. 

Additional DA and fusion procedures can be 
performed upon the measurements from each 
detected track. Velocity identification and filtering 
can reject the remaining FA in the single target 
case. Target state estimation and tracking can be 
done by Kalman filtering with variable sampling 
interval. The Multiple hypotheses tracking 
algorithm [4] can resolve and track the trajectories 
in the multiple target case. 

6. Simulation results 
The following scenario has been chosen to estimate 
algorithm performance: Two radars observe a 
common target with arbitrary chosen trajectory. 
Averaging 5000 independent Monte Carlo 
simulation runs, the next results have been 

obtained for PS grid sizes: d
j

ρ ρ= ∆ , d
j

θ = 2∆θ
 

( j = 2 9, ) and radar parameters: 

• r km1 70= , α1 90= o ; r km1 85max = ; 

σ r m1 500= , σ α
1 05= . o , T s1 3= ; 

• r r2 1= , α 2 0= o , r r2 1
max max= , σ σr r

2 1= , 

σ σα α
2 1= , T T1 2= ; 

• PD
J = 1  and PFA

J = 0 . 

In addition the sub-accumulator size is assumed 
equal to PS grid step. 

Fig. 7 illustrates the dependence of PG  on strip 

width and on (accumulator size)/(grid step size) 
ratio. The curves in this figure are grouped subject 



  

to strip width. The solid lines in any group express 
particular sensor’s probabili ties PG  depending on 

number of sub-accumulators in the strip (i.e. 
accumulator size/grid step size ratio).  
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Fig. 7 Dependence of the probabili ty PG  on  

the accumulator and parameter grid steps sizes. 

As it can be seen on the figure the multisensor 
case (the dashed lines) PG  is slightly worse. This 

case, however, ensures optimal choice of detection 
threshold, as it is ill ustrated in Fig. 8 and 9. In Fig. 
8 PFTD  and PRTD  are given subject to number of 

obtained measurements for four different sensors 
( PD

1 03= . , PFA
1 55 10= × − ; PD

2 05= . , PFA
2 510= − ; 

PD
3 08= . , PFA

3 65 10= × − ; PD
4 09= . , PFA

4 610= − ).  

 
Fig. 8. Pdf’s of the events of a real and of a false 

track multisensor detection 

After data fusion (multisensor case, Fig. 9) the 
disposition of curves of fused PFTD  and PRTD   

allows the optimal choice of detection threshold.  

 
Fig. 9. Pdf’s of the events of  a real and of a false 

track single-sensor detection 

7. Conclusions 
Multiple-sensor data association algorithm for 
rectili near tracks initiation is proposed in the 
paper. It uses the modified Hough transform 
algorithm to assign the measurements arriving 
from multiple sensors to a fixed set of standard 
straight-line trajectories and to reject the false 
alarms. The measurements arrive without any 
synchronisation, with different accuracy and have 
different probabili ties for real and false target 
detection. A relationship for measurements 
transformation from polar FS co-ordinate system 
to PS is proposed. The equations for the 
accumulator sizes, for the grid steps and for the 
track detection threshold are derived. 

The proposed algorithm has increased false 
alarm resistance and requires a short time for track 
initiation. 
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