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1. Introduction. The paper presents an extension of Nagarajan (et.al.) algorithm [1] for 

dealing with multitarget tracking.  The algorithm in [1] is intended to overcome combinatorial problems, 
arising when  multiple targets are to be tracked simultaneously in track-while-scan radars.  We suggest in 
this paper additional rules in the algorithm processing, which lead to considerable reduction of 
computational load even in comparison with Nagarajan's algorithm. 

2. The problem formulation. In reference [2] the authors present new approach for 
calculating probabili ty of each hypothesis. They suggest to util ize information from signal processor of the 
radar for improving the tracking process. As a result of this, in the algorithm of [1] the authors consider 
only two possibili ties for any measurement, receiving at scan  k : a) to be originated from one of the 
tracking targets; or b) to be from a new target. 

Following the notation in [3] the authors assume at scan k  N  targets  T T TN1 2, ,..., , their 

predicted track measurements 
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( )z k z k z kN1 2  and associated covariance matrices 

S k S k S kN1 2( ), ( ),... , ( ) , respectively, according to hypothesis, say, Ω g
k −1  , retained after scan k − 1. 

They assume also the class conditional density of measurement z ki ( )  ( )i M= 1 2, , ... ,  to be given by 

normal distribution 
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Using the assumption, mentioned above, and following Bayes theorem, they derive for 
probability of the event ψ ij , that the i -th measurement is from j -th target 
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Consider all hypotheses retained at the end of scan k − 1 the authors derive recursive formula for 
calculating probabili ty of every new hypothesis at scan k  according to every one hypothesis at scan 
k − 1 
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Here C  is normalized constant and  ( )β i jh g
k, ,Ω −1  is probabili ty calculated in eqn. /2/. 

  3. Nagarajan's algor ithm.  The most important feature of this formula is that the probabili ty 
of any new hypothesis is  proportional of certain factors already evaluated.  The advantage of this feature 
can be seen in the algorithm, stated below, and proposed in reference [1]. 

Hereafter, we will assume one hypothesis retaining after k − 1 scan, taking into account that 
presented part of the algorithm can be repeated for any additional hypothesis at scan k − 1. For 

simplifying the notation let to represent factors β   from  eqn. /3/ as ( )β m t, , where m Mk= 12, ,...,  

denotes measurements indices and  t T T T TN new= 1 2, ,..., ,  denotes target’s indices. The values of β , as 

it has been mentioned above, can be previously evaluated. The Table 1 contains such  kind of  values from 
the example cited in [1]. 

The  score  of  any  feasible hypothesis will contain eight terms in the product as to the Table 1.  
A hypothesis is  said  to be  feasible  if  not more than one measurement is associated with any known 
target, but multiple measurements can be associated with new  targets  (the  last row in Table 1).  We can 



see, however, that if we convert Table 1 dividing every column’s element  by the last  element of  the  
column (fromTnew  -row)  the arrangement of the hypothesis according to their scores will not be changed 

as it is seen from  Table 2. 
Table 1 

 M1
 M2

 M3
 M4

 M
5

 
M6

 M7
 M8

 

T1
 0.37 - 0.35 0.61 0.72 0.43 - 0.15 

T2
 0.23 0.45 0.33 0.15 0.2 0.37 0.72 0.6 

T3
 - 0.35 0.25 0.21 - 0.16 0.27 0.15 

T4
 0.35 0.17 0.05 - 0.07 - - 0.08 

Tnew
 0.05 0.03 0.02 0.03 0.01 0.04 0.01 0.02 

Table 2 
 M1

 M2
 M3

 M4
 M

5

 
M6

 M7
 M8

 

T1
 7.4 - 17.5 20.3 72 10.8 - 7.5 

T2
 4.6 15 16.5 5 20 9.2 72 30 

T3
 - 11.7 12.5 7 - 4 27 7.5 

T4
 7.0 5.7 2.5 - 7 - - 4 

Tnew
 1 1 1 1 1 1 1 1 

Table 3 
 M1

 M2
 M3

 M4
 M

5

 
M6

 M7
 M8

 

I  0 1 2 3 4 5 6 7 
T1

 5 4 3 6 8 1 - - 
T2

 7 8 5 3 2 6 4 1 
T3

 7 3 2 8 4 6 - - 
T4

 1 5 2 8 3 - - - 
 
And the  last  step before  algorithm representation is to construct the preferred 

measurements matrix - Table 3.  In the row  T1  of this table the value 5 means that M5  is the most 

preferable measurement for the first  target,  the  next  value of 4 -  that  measurement M4  is  the  next 

preferable  and  so  on.   For  example one possible hypothesis is (5,7,3,1).  Another way of expressing this 
hypothesis is by  using preference index from first row  of table 3 - (0,0,1,0).  We can notice that  the  
less  is  the  index,  the  more  preferable  is corresponding  measurement.  Before starting algorithm' s 

steps it will be useful to discuss the next lemma.  Let ( )P iψ  represent the  probability  of the 

hypothesisψ i  being true and let Ind ni ( )  represent the n -th element of preference-index  presentation  

of ψ i . Suggested lemma is 

( ) ( )P Pi jψ ψ>   if  Ind n Ind ni j( ) ( )≤  , 

for each value of n  running from 1  to the number N of known targets. Taking two hypotheses in 
preference-index presentation by means of this lemma we can conclude, in some cases, which is more 
likely without actually evaluating the products of their scores. According to the authors, this is one of the 
main achievement in the reference [1]. 

For clearness of the notation we wil l say that a hypothesis, presented in preference-index way, 
is of level l if the sum of its preference indices is equal l .Thus hypothesis (0,0,0,0) is of level 0, 
hypothesis (0,1,0,0) is of level 1 and hypothesis (1,0,2,1) is of level 4. Likewise, if two hypotheses are 
subject to the lemma' s rule - Ind n Ind ni j( ) ( )≤ , we will say that hypothesis j  is consequence from 

hypothesis  i , i.e. it can be construct by only adding some values to the preference-index presentation of    
i . The particular steps of the algorithm stated in [1] are as follow: 

Step 1.  Creation of hypotheses of level l + 1  from a given hypothesis at level l  can be done by 
simply incrementing preference   indices, one at a time. 

Step 2.  Feasibil ity checking of created hypothesis. 



Step 3.  If hypothesis is feasible we check whether it is consequence from any hypothesis out of  
candidate hypotheses li st: 
         a) If it is not - we include it in the candidate hypotheses list; 
         b) If turn out that it is consequence from some of candidate hypothesis we discard it. 

Step 4.  If hypothesis is not feasible and it is not consequence   from any of the hypotheses in 
candidate hypotheses li st we include  it in the li st of nonfeasible hypotheses for subsequent processing. 

Simulation program realizing stated above algorithm shows significant reduction of number of 
hypotheses to be processed as well as the running time for the task. But if we take an example with 
N = 10  targets and include in the scenario M = 15 measurements the combinatorial problem arise in 
two directions: a) time of processing and  b) memory storage limitation (especially for the li st of 
nonfeasible hypotheses for subsequent processing). 

4. Extended algorithm. We wil l propose here an extension of stated above algorithm which, in 
some extent, overcomes problems arising with large examples and move ahead the limit of its real practice 
implementation. 

 Step I.  Creation of new hypotheses of level l + 1 from a given hypothesis at level l  will 
perform by incrementing preference  indices one et a time, choosing direction from left to right. But  the 
process will start from the first non-zero index looking from  right. 

Step II. On this step we check whether the new hypothesis is consequence from some of 
hypothesis out of candidate hypotheses li st: 
                    a) If it is consequence from some of candidate hypothesis we  discard it and go to Step I; 
                    b) If it is not consequence from any of candidate hypotheses  we continue with the next step. 

 Step III.  Feasibil ity checking of new-created hypothesis: 
                    a) If hypothesis is feasible we include it in candidate hypotheses list and go to step I; 
                    b) If hypothesis is not feasible we examine the cause of its  nonfeasibil ity: 
                     - if repeated measurements occur at indices' places which are from the left side of right most 
nonzero index - then we   discard this hypothesis end stop processing this branch (connected  with level 'l' 
hypothesis); 
                      - if this is not the case, the new hypothesis is included  in the nonfeasible hypotheses list for 
subsequent processing. 

Additional rule: If at level 1 a certain  hypothesis turn out  feasible, the index corresponding to 
its nonzero element become 'forbidden', i.e. it will not be used any more for hypotheses generation. By 
help of this rule we avoid creation of hypotheses which wil l be consequence from this feasible hypothesis.  

It wil l be interesting to give rationale of some of extensions in the proposed algorithm. Let's 
take the four hypotheses at level 1 from the example of [1] - (1,0,0,0) , (0,1,0,0,) , (0,0,1,0) and (0,0,0,1). 
We can generate now four new hypotheses at level 2 from every one of level 1 (Table 4):  
Table 4 

1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1 
2,0,0,0 1,1,0,0 1,0,1,0 1,0,0,1 
1,1,0,0 0,2,0,0 0,1,1,0 0,1,0,1 
1,0,1,0 0,1,1,0 0,0,2,0 0,0,1,1 
1,0,0,1 0,1,0,1 0,0,1,1 0,0,0,2 

 
It  is  easy to be noticed that the elements above the main diagonal are the same as these under the main 
diagonal.  But  if we  would  foll ow  the  rule  added  to  the step I we would avoid . hypotheses  
dupli cation  saving  time  of  the  processor.  Or additi onal examination in step III.  Let us take the 
nonfeasible hypothesis (0,1,0,0,0,0) assuming repeated  measurements  at  2-d and 3-d positions.  
According to the step I we can create five new hypotheses  of  level  2:   (0,2,0,0,0,0)  ,   (0,1,1,0,0,0) , 
(0,1,0,1,0,0)  ,  (0,1,0,0,1,0)  and   (0,1,0,0,0,1). It is easy to conclude that every hypothesis after the 
second as well as  their 'successors' will be nonfeasible. The reason is that the unit in the 2-d place and the 
zero in the 3-d place of the origin correspond to the repeated  measurements. So, we can stop hypotheses 
generation after the second saving both time of the processor and memory storage. 

5. Simulation results.  The program realization of Nagarajan algorithm as well as the 
realization of its extension have been used for numerical experiments. The first experiment include the 



example in the [1]. We run the example in [1] with Nagarajan's algorithm for proving its correct program 
realization. The results from the running coincide with the results in the paper. We run the same example 
with the extended algorithm. If we accept the next abbreviations :   CH - Number of Created Hypotheses, 
HCF - Number of Hypotheses Checked for Feasibility,  NAG - Nagarajn's algorithm,  EXT - Extended 
algorithm, T/M - Number of Targets/Number of Measurements   the experimental results will look as 
follow 
Table 5 

 NAG EXT 
CH 90 18 

HCF 32 8 
 

Even in such a simple case with 4 targets and 8 measurements in the cluster the advantage of 
extended algorithm is obvious. 

Another run of experiments with more complicated cases have been made. Table 6 compares 
created hypotheses and those hypotheses for which feasibil ity check had to be made. The two last columns 
contain running time in seconds on Intel 486 processor. Each value in the table was obtained by averaging 
over 20 independent program runs. It is seen that the case of 6 targets and 10 measurements in one cluster 
 is the limit for implementing the Nagarajan's algorithm (assuming radar with 10 sec. scan). 
Table 6 

- CH HCF Time (in sec.) 
T/M NAG EXT NAG EXT NAG EXT 
5/9 419 89 109 61 1.054 0.068 
6/10 6078 628 1186 366 12.1 0.14 
7/12 36583 4077 8646 3179 184.7 1.05 

 
The last run of experiments concerns the extended algorithm only and seeks to check the limit of its 
implementation. It is seen from Table 7 that extended algorithm can process twice more complicated cases 
then the algorithm from [1]. 
 Table 7 

T/M 5/9 6/10 7/12 8/13 9/14 10/15 
Time (sec.) 0.086 0.14 1.05 3.00 6.07 8.4 

 
6. Conclusions.  In this paper an extension of Nagarajan algorithm [1] has been presented. 

Using the main  ideas  and  the  approach  of  the authors we have added some additional rules in 
algorithm processing. This enables to speed up considerably the algorithm work and to move ahead the 
limit of its practical implementation. 
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