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1. Introduction. The paper presents an extension of Nagargjan (et.a.) algorithm [1] for
deding with multitarget tradking. The agarithm in [1] is intended to overcome combinatorial problems,
arisng when multiple targets are to be tracked simultaneoudy in track-while-scan radars. We suggest in
this paper additional rules in the agorithm processing, which lead to considerable reduction of
computational |oad even in comparison with Nagarajan's algorithm.

2. The problem formulation. In reference [2] the authors present new approach for
cdculating probability of ead hypathesis. They suggest to utilize information from signal processor of the
radar for improving the tracking process. As a result of this, in the algorithm of [1] the authors consider

only two posshilities for any measurement, receiving at scan K: a) to be originated from one of the
tracking targets; or b) to be from a new target.

Following the notation in [3] the authors assume at scan K N targets T, T,,..., T, their
predicted track measurements  Z(K),2,(K),...,2y(K)  and associated covariance matrices
S.(k),S,(K),...,Sy (K), respectively, according to hypothesis, say, Qz_l , retained after scan k —1.
They assume also the class conditional density of measurement Z (k) (i =12,..., M) to be given by
normal digtribution

1y pz(K)/T,) = N(z(K);2(K),S(K) . j=12..,N.
Using the assumption, mentioned above, and following Bayes theorem, they derive for
probability of the event J;; , that the i -th measurement isfrom J -th target

p(z(k)/T})
S oz k)/T)
]
Consider all hypotheses retained at the end of scan K — 1 the authors derive recursive formula for

cdculating probability of every new hypothesis at scan K according to every one hypothesis at scan
k-1

12/ P(Tj /z (k)) =

13 P(QE):é%(Qg‘l)dﬁ(i,jh,Qg'l)E

Here C isnormalized congtant and /B(i, jh,Qg_l) is probability calculated in egn. /2/.

3. Nagarajan's algorithm. The mogt important feature of this formula is that the probability
of any new hypothesis is propational of certain factors already evaluated. The advantage of this feature
can be seen in the dgoarithm, stated below, and proposed in reference [1].

Heredter, we will assume one hypathesis retaining after K — 1 scan, taking into account that
presented part of the agorithm can be repeaed for any additional hypothesis at scan K —1. For

simplifying the notation let to represent factors 3 from eqn. /3/ as ﬁ(m,t), where m=12,..., M,

denotes measurements indicesand t =T, T,,..., T, T, denotestarget’sindices. Thevaluesof 3, as

it has been mentioned above, can be previoudy evaluated. The Table 1 contains such kind of valuesfrom
the example dted in [1].

The score of any feasible hypothesiswill contain eight termsin the product asto the Table 1.
A hypoathesis is said to be feasible if not more than one measurement is associated with any known
target, but multiple measurements can be associated with new targets (the last row in Table 1). We can



see, however, that if we convert Table 1 dviding every column’s element by the last element of the
column (from T, -row) the arangement of the hypothesis aacording to their scores will not be changed
asit is sen from Table 2.

Table1
M, M, M, M, M, M, M, M,
T, 0.37 - 0.35 0.61 0.72 0.43 - 0.15
T, 0.23 0.45 0.33 0.15 0.2 0.37 0.72 0.6
T, - 0.35 0.25 0.21 - 0.16 0.27 0.15
T, 0.35 0.17 0.05 - 0.07 - - 0.08
T, 0.05 0.03 0.02 0.03 0.01 0.04 0.01 0.02
Table 2
M, M, M, M, M, M, M, M,
T, 7.4 - 17.5 20.3 72 10.8 - 7.5
T, 4.6 15 16.5 5 20 9.2 72 30
T, - 11.7 12.5 7 - 4 27 7.5
T, 7.0 5.7 2.5 - 7 - - 4
T, 1 1 1 1 1 1 1 1
Table 3
M, M, M, M, M, M, M, M,
| 0 1 2 3 4 5 6 7
T, 5 4 3 6 8 1 - -
T, 7 8 5 3 2 6 4 1
T, 7 3 2 8 4 6 - -
T, 1 5 2 8 3 - - -

And the last step before agorithm representation is to construct the preferred
measur ements matrix - Table 3. Intherow T, of this table the value 5 means that M is the most

preferable measurement for the first target, the next value of 4 - that measurement M, is the next

preferable and so on. For example one paossible hypathesisis (5,7,3,1). Another way of expressing this
hypathesis is by using preference index from first row of table 3 - (0,0,1,0). We @n notice that the
less is the index, the more preferable is corresponding measurement. Before starting algorithm' s

steps it will be useful to discuss the next lemma. Let P(L[Ii) represent the probability of the
hypathesisy; being true and let Ind, (n) represent the N -th element of preference-index presentation
of U, . Suggested lemmaiis

P(w;)>P(w;) if Ind,(n) < Ind; () ,
for ead value of N running from 1 to the number N of known targets. Taking two hypotheses in
preference-index presentation by means of this lemma we @n conclude, in some @ses, which is more
likely without actually evaluating the products of their scores. According to the authors, this is one of the
main achievement in the reference[1].

For clearness of the notation we will say that a hypothesis, presented in preference-index way,
is of level | if the sum of its preference indices is equal | .Thus hypothesis (0,0,0,0) is of level O,
hypathesis (0,1,0,0) is of level 1 and hypathesis (1,0,2,1) is of level 4. Likewise, if two hypotheses are
subject to the lemma’ s rule Ind; (n) < Ind; (), we will say that hypothesis ] is consequence from

hypothesis 1, i.e. it can be cnstruct by anly adding some val ues to the preference-index presentation of
i . Theparticular steps of the algorithm stated in [1] are as follow:

Step 1. Creation of hypotheses of level | +1 from a given hypothesisat leve | can be done by
simply incrementing preference indices, one at atime.

Step 2. Feasibility checking of created hypathesis.



Step 3. If hypathesis is feasible we theck whether it is consequence from any hypathesis out of
candidate hypothesesli &t:
a) If it isnot - weinclude it in the @ndidate hypotheses list;
b) If turn out that it is consequence from some of candidate hypothesis we discard it.
Step 4. If hypathesis is not feasble and it is not consequence from any of the hypotheses in
candidate hypotheseslist weinclude it in thelist of nonfeasible hypotheses for subsequent processing.

Simulation program redizing stated above algorithm shows significant reduction of number of
hypatheses to be processed as well as the running time for the task. But if we take an example with

N =10 targets and include in the scenario M = 15 measurements the combinatorial problem arise in
two directions: a) time of processing and b) memory storage limitation (especialy for the list of
nonfeasible hypotheses for subsequent processing).

4. Extended algorithm. We wil | propcse here an extension of stated above algorithm which, in
some extent, overcomes problems arising with large examples and move ahea the limit of its red pradice
implementation.

Step |. Creation of new hypatheses of level | +1 from a given hypothesis at level | will
perform by incrementing preference indices one @ atime, choosing drection from left to right. But the
process will start from the first non-zero index looking from right.

Step I1. On this dep we check whether the new hypothesis is consequence from some of
hypathesis out of candidate hypotheses li st:

a) If it is conseguence from some of candidate hypothesiswe discard it and goto Step I;
b) If it is not consequence from any of candidate hypatheses we continue with the next step.

Step I11. Feashility checking of new-creaed hypothesis:

a) If hypothesisisfeasble we includeit in candidate hypotheses list and goto step |;
b) If hypothesisis not feasible we examine the cause of its nonfeasihility:
- if repeated measurements occur at indices' places which are from the | eft side of right most
nonzero index - then we discard this hypothesis end stop processing this branch (connected with level 'I'
hypathesis);
- if thisis not the cae, the new hypathesisisincluded in the nonfeasible hypatheseslist for
subsequent processing.

Additiona rule: If at level 1 a certain hypothesisturn out feasible, the index corresponding to
its nonzero element become 'forbidden’, i.e. it will not be used any more for hypatheses generation. By
help of this rule we avoid creaion of hypotheses which will be consequence from this feasible hypothesis.

It will be interesting to give rational e of some of extensionsin the propcsed agorithm. Let's
take the four hypatheses at level 1 from the example of [1] - (1,0,0,0) , (0,1,0,0,) , (0,0,1,0) and (0,0,0,1).
We can generate now four new hypotheses at level 2 from every one of level 1 (Table 4):

Table4d

1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1
2,000 1,1,0,0 1,0,1,0 10,01
1,1,0,0 0,2,0,0 0,1,1,0 0,101
1,0,1,0 0,1,1,0 0,0,2,0 0,011
1,0,0,1 0,1,0,1 0,0,1,1 0,0,0,2

It is easy to be noticed that the dements above the main diagonal are the same as these under the main
diagonal. But if we would follow the rule added to the step | we would avoid . hypotheses
duplication saving time of the processor. Or addtional examination in step I11. Let us take the
nonfeasible hypothesis (0,1,0,0,0,0) assuming repegded measurements a  2-d and 3d pations.
According to the step | we can creae five new hypatheses of level 2. (0,2,0,0,0,0) , (0,1,1,0,0,0),
(0,1,0,1,00 , (0,1,0,0,1,00 and (0,1,0,0,0,1). It is easy to conclude that every hypathess after the
second as well as their 'successors will be nonfeasible. The reason isthat the unit in the 2-d place and the
zero in the 3-d place of the origin correspond to the repeated measurements. So, we ca stop hypaotheses
generation after the seaond saving both time of the processor and memory storage.

5. Simulation results. The program realization of Nagarajan agorithm as wel as the
realization of its extensgon have been used for numerical experiments. The first experiment include the




examplein the [1]. We run the example in [1] with Nagaragjan's algorithm for proving its correct program
realization. The results from the running coincide with the results in the paper. We run the same example
with the extended algarithm. If we accept the next abbreviations: CH - Number of Creaed Hypotheses,
HCF - Number of Hypatheses Checked for Feasibility, NAG - Nagargn's algorithm, EXT - Extended
algorithm, T/M - Number of Targets/Number of Measurements the experimental results will look as

follow
Table5
NAG EXT
CH 90 18
HCF 32 8

Even in such a simple cae with 4 targets and 8 measurements in the duster the advantage of
extended agorithm is obvious.

Anocther run of experiments with more complicaed cases have been made. Table 6 compares
creaed hypotheses and those hypatheses for which feasibil ity check had to be made. The two last columns
contain running timein seconds on Intel 486 processor. Each valuein the table was obtained by averaging
over 20 independent program runs. It is sen that the case of 6 targets and 10 measurementsin one cluster

is the limit for implementing the Nagarajan's algorithm (assuming radar with 10 sec. scan).
Table 6

- CH HCF Time (in sec.)
T/M NAG EXT NAG EXT NAG EXT
5/9 419 89 109 61 1.054 0.068
6/10 6078 628 1186 366 12.1 0.14
7/12 36583 4077 8646 3179 184.7 1.05

The last run of experiments concerns the extended algorithm only and seeks to check the limit of its
implementation. It is ssen from Table 7 that extended algorithm can processtwice more complicated cases
then the algorithm from [1].

Table7
TIM 5/9 6/10 7/12 8/13 9/14 10/15
Time (sec.) 0.086 0.14 1.05 3.00 6.07 8.4

6. Conclusions. In this paper an extension of Nagargjan algorithm [1] has been presented.
Using the main ideas and the approach of the authors we have alded some additiona rules in
algorithm processing. This enables to speed up considerably the algorithm work and to move ahea the
limit of its practicd implementation.

REFERENCES 1. NAGARAJAN, V., M.R. CHIDAMBARA, R.N. SHARMA, Combinatorial
problem in multitarget tracking - a comprehensive solution, |IEE Proc. 134, 1987, No 1, 113-118. 2.
NAGARAJAN, V., M.R. CHIDAMBARA, R. N. SHARMA, New approac to improved detection and
tracking performance in track-while-scan radars, Part2: detection, track initiation and association. 3.
REID, D.B., An Algorithm for Tracking Multiple Targets, IEEE Transactions on Automatic control, vol.
ac24, No 6, 1979.



