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Introduction. This paper concerns the problem of  data association (DA) which is the 

central problem of multitarget tracking. Its simplest form can be stated as follows: to associate 
a list of measurements to a list of target positions by an unknown, random permutation [1-3]. 
This measurement-target association problem is formulated as one of maximizing the joint 
likelihood function of the measurements partition. Mathematically this formulation of data 
association problem leads to the well-known assignment problem. In this case, maximization 
of joint likelihood function is replaced by minimization of negative log-likelihood function 
[1-4]. However, the problem of associating data from multiple noncollocated sensors, where 
the target number and target positions are unknown and targets are closely spaced is not well 
studied. 

Some special features of the problem under consideration arise in a case of dense 
target environment. Particular attention deserves the extent of target density when the optimal 
solution does not coincide with the actual measurements distribution. 

Problem formulation. Hereafter we will confine the multisensor problem to three 
sensors with known positions. Three sensors in multitarget multisensor problem are, in a 
sense, an optimal number of sensors, as it is pointed out by HALL in [4]. We assume that 
number of targets is unknown. We consider a planar surveillance area, wherein each target 
position is described by its Cartesian coordinates, x and y. As a matter of fact, a common type 
of radars can measure the range and the azimuth. Using coordinate transformation, however, 
we can easily obtain Cartesian target coordinates. We assume no missing detection and false 
alarms in order to simplify algorithm's description. 

We denote the set of measurements received from any sensor by }{ s
is

Z , where s =1, 2 

or 3; n = 1,2,…,n and n is the number of sensors' reports. The solving of the problem consists 
of finding such a partitioning of the measurements in 3-tuples }{ 321

321
,, iii ZZZ that each 

measurement originates from one and the same target. Assuming Gaussian statistics for 
measurements 

 

(1)                                                 )( 




−= − vRv

R
vf T 1

2

1
exp

2

1

π
, 

 where v is a residual vector  between the measurements and R is a residual covariance matrix. 
We can use as a measure of similarity of these two measurements the Mahalanobis distance 

vRvT 1−  [4]. 
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The minimization of this distance maximizes the joint likelihood function (1). The 
measure that a given 3-tuple of measurements - 21

21
, ii ZZ  and 3

3i
Z , originates from the same 

target will be the sum 
321 iiiA  of these Mahalanobis distances. 

The stated above problem can be mathematically formulated as a following three-
dimensional problem: 

 minimize  
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for all    ,, 321 =iii  1÷n. 

 
Here  

321 iiiδ  are binary variables, taking values 0 or 1. 

Proposed algorithms. To our knowledge there are no algorithms for finding optimal 
solution to the problem stated above. What is more, it can be shown that 3D AP is NP-
complete [5]. On the other hand, in a dens target case the optimum does not provide the actual 
measurements' distribution. We propose here heuristic strategy in order to create useful 
algorithms for finding suboptimal decisions. They have a good reliabil ity and high 
performance estimation in terms of correct association (CA) probabil ity. 

ALGORITHM  A1. This algorithm involves successive solving of two 2-dimensional 
problems: 
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We can solve this problem using one of the well known assignment algorithms, e.g. an 

extension of Munkres' algorithm [6]. Let us denote the obtained solution by 
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iiA β . 

Here 
1i

β  is the measurement of sensor 2 to which measurement  1i  of sensor 1 is 

assigned. 
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Using the same algorithm we solve the problem and denote its solution by 
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Analogous to equation (4),  

1i
γ   is the measurement of sensor 3 to which measurement  

1i  of sensor 1 is assigned. 
step 3 :  combining (4) and (5) we obtain suboptimal solution to a 3-dimensional 

problem 
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We can improve the results obtained by solving another 2-dimensional problem. 
ALGORITHM A2. In addition to the procedure described above (step1 and step2) we can 

solve the following problem: 
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Let us denote the obtained decision by 
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Now, in addition to (6), we can construct two more 3-dimentional solutions and to 

choose the best one 
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Here a question arises whether the solutions  ∗∗∗ ΦΦΦ IIIIII  and  ,  are feasible, i.e. 

whether they satisfy the constraints (3). Let us examine solution (6) with respect to the first 
term of constrained (3). Indices in (6) mean that for each }{ n1,2,...,  

1
∈iγ  in the "plane" ( )21, ii  

there is no more than one "participant"  
111 iiiA γβ  in the sum of (6),which is in accordance with 

the constraints. Analogous reasoning can be done another two terms of (3). 
In the algorithms described above every 2-dimensional solution is derived 

independently from the others. The next step of improving the assignment technique is to 
solve the second 2-dimensional problem in A1, using results obtained from the first solution. 

ALGORITHM A3. Here we start with step 1 of A1. But in step 2 we solve the following 
assignment problem: 
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Fig.1   Fraction of correct association versus                                      Fig.2   Fraction of  correct association versus 
the ratio R of target separation to measurement                                  different number of targets for R = 2  
noise standard deviation for 36 targets 
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As a result we obtain a solution of 3-dimentional case directly      ∑
=
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Monte Carlo verification. The numerical examples we have chosen contain different 

number of targets but with common scenario frame. In that scenario the targets are disposed 
in the nodes of rectangular net. Two figures illustrate relative performance of the three 
algorithms on randomly generated sensor reports. Each point in the figures was obtained by 
averaging over 100 independent programme runs. 

Conclusions. In this paper computationally simple algorithms for solving 3-
dimentional assignment problem have been proposed. Averaging more than 1000 programme 
runs we obtained experimentally a bound of computational time less than ( )3nΟ .  For dealing 
with a more complicated case including missing detections and false alarms some extensions 
of described algorithms have to be made. 
 
REFERENCES 
1. PATTIPATI K. R., R.S. DEB, Y. BAR-SHALOM, R.B. WASHBURN.  A relaxation Algorithm for the 

Passive Sensor Data Association Problem, Proceedings of the 1989 ACC. 
2. NAGARAJAN V., M.R. CHIDAMBARA, R.N. SHARMA. IEEE Proc.,134, Pt. 

���������
	�� � ������
-118. 

3. EMRE E., J. SEO. IEEE Trans. on A&ES, 25
������
����� ���

 
4. HALL D. L. Mathematical Techniques in Multisensor Data Fusion, Artech House, Boston, 

1992. 
5. GAREY M. R., D.S. JONSON. Computers and Intractability ( A Guide to the Theory of NP-

completeness), W.H. Freeman, 1979. 
6. BOURGEOIS F., J-C. LASSALLE. Communication of ACM, CERN, Geneva, 14, 1971, � 12. 

�
���
���
�� 
!�"
#%$�$

& '()*
+

,%- . / 0 1 2
354�687:9�;=< >@?BADCE9�6GF�?HC�I8?�J�9�6G9KCL<M4�NPO

Q�R=S%T�UWV XZY�[\Q�]
^�_=`%a�bWc dZe�f\^�g
h�i=j%k�lWm nZo�p\hrq

ss

t
uGv
w%x
y%z
{}|
~%�
�%�
�%�

� ����
�

�G� �%� �%� �}�
�G�%���%�@�B���B���G�%�


