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Introduction. This paper concerns the problem of data asciation (DA) which is the
central problem of multitarget tradking. Its smplest form can be stated as follows:. to asociate
alist of measurements to alist of target positions by an unknown, random permutation [1-3].
This measurement-target association problem is formulated as one of maximizing the joint
likelihood function of the measurements partition. Mathematically this formulation of data
asociation problem leads to the well-known assgnment problem. In this case, maximization
of joint likelihood function is replaced by minimization of negative log-likelihood function
[1-4]. However, the problem of associating data from multiple noncollocaed sensors, where
the target number and target positions are unknown and targets are dosely spaced is not well
studied.

Some special fedures of the problem under consideration arise in a cae of dense
target environment. Particular attention deserves the extent of target density when the optimal
solution does not coincide with the adual measurements distribution.

Problem formulation. Heredter we will confine the multisensor problem to three
sensors with known positions. Three sensors in multitarget multisensor problem are, in a
sense, an optimal number of sensors, as it is pointed out by HaLL in [4]. We asuume that
number of targets is unknown. We consider a planar surveillance areg wherein each target
position is described by its Cartesian coordinates, x and y. As a matter of fad, a mmon type
of radars can measure the range and the aimuth. Using coordinate transformation, however,
we can easily obtain Cartesian target coordinates. We asume no missng detedion and false
alarms in order to simplify algorithm's description.

We denote the set of measurements received from any sensor by {Z,S} wheres =1, 2

or 3;n=1,2,...,nand n is the number of sensors reports. The solving of the problem consists
of finding such a partitioning of the measurements in 3-tuples {Zi,Zii,Zi‘:‘} that ead
measurement originates from one and the same target. Asauuming Gausdan statistics for
measurements

(1) f(v)= LexpE—EVT RV,
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where v is aresidual vector between the measurements and R isaresidual covariance matrix.
We can use as a measure of similarity of these two measurements the Mahalanobis distance

v R [4].



The minimization of this distance maximizes the joint likelihood function (1). The
measure that a given 3-tuple of measurements - Z:,Z? and Z?, originates from the same
target will bethesum A ; of these Mahalanobis distances.

The stated above problem can be mathematically formulated as a following three
dimensional problem:
minimize

@) ZZ O subjed to

(3) 225@3 =1 225@3 =1 iiiid1i2i3 =1

forall i,i,,i;= 1+n.

Here o, arebinary variables, taking values 0 or 1.

Proposed algorithms. To our knowledge there ae no algorithms for finding optimal
solution to the problem stated above. What is more, it can be shown that 3D AP is NP-
complete [5]. On the other hand, in adens target case the optimum does not provide the adual
measurements distribution. We propose here heuristic strategy in order to create useful
algorithms for finding suboptimal decisions. They have a good reliability and high
performance estimation in terms of corred association (CA) probability.

ALcoritTHm  Al. This algorithm involves siccessve solving of two 2-dimensional
problems:

n n
step 1: to minimize Z A0, subedto

1=

n n

Zéili21 =1, Zléili21 =1, foral i,i,= 1+n.

We @n solve this problem using one of the well known assignment algorithms, e.g. an
extension of Munkres' algorithm [6]. Let us denote the obtained solution by

(4 ®, =Y Ay,

Here B, is the measurement of sensor 2 to which measurement i, of sensor 1 is
assigned.

n n
step 2: to minimize Z A10.,, subedto

n n

Zéi11i3 =1, Zéi11i3 =1, foral ij,i; = 1+n.



Using the same algorithm we solve the problem and denote its solution by
(5) CDZ = Z A].J-V\l )

Analogous to equation (4), y, isthe measurement of sensor 3 to which measurement
i, of sensor 1 isassigned.

step 3 : combining (4) and (5) we obtain suboptimal solution to a 3-dimensional
problem

(6) o =0, 00,23 Ay,

We can improve the results obtained by solving another 2-dimensional problem.

ALcoriTHm A2. In addition to the procedure described above (stepl and step2) we can
solve the following problem:

step 3 : to minimize Z A0y,  subjectto
Zélizi:g :l’ Zélizi3 :l, fOI’ a“ i21i3 = l—n

Let us denote the obtained decision by
(7) CDB = Z 'A“lizy‘2 '

Now, in addition to (6), we can construct two more 3-dimentional solutions and to
choose the best one

(Dﬁ E{(Dl O CDB}:Z\A’ZiZVZ ; q)ﬁl E{(Dz O ¢3}:Zpb3[53i3 .

Here a question arises whether the solutions @/, @ and®|, are feasible, i.e.
whether they satisfy the constraints (3). Let us examine solution (6) with respect to the first
term of constrained (3). Indices in (6) mean that for each y; 0{1,2,...,n} inthe "plane’ (i,.i,)

I2
there is no more than one "participant” Ap.y, in the sum of (6),which is in accordance with

the constraints. Analogous reasoning can be done another two terms of (3).

In the algorithms described above every 2-dimensional solution is derived
independently from the others. The next step of improving the assignment technique is to
solve the second 2-dimensional problem in A1, using results obtained from the first solution.

ALcoriTHM A3. Here we start with step 1 of Al. But in step 2 we solve the following
assignment problem:
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step2: minimize Z Alﬁ‘li35ilﬁ‘ s subject to
Zldilﬁ‘li3 =1, Zdilﬁwlia =1, for all i11i3 = 1-n.

As aresult we obtain a solution of 3-dimentional case directly ~ ®"= Apy. -

1=

Monte Carlo verification. The numerical examples we have chosen contain different
number of targets but with common scenario frame. In that scenario the targets are disposed
in the nodes of rectangular net. Two figures illustrate relative performance of the three
algorithms on randomly generated sensor reports. Each point in the figures was obtained by
averaging over 100 independent programme runs.

Conclusions. In this paper computationally simple algorithms for solving 3-
dimentional assignment problem have been proposed. Averaging more than 1000 programme
runs we obtained experimentally a bound of computational time less than O(n"‘). For dealing

with a more complicated case including missing detections and false alarms some extensions
of described algorithms have to be made.

REFERENCES

1. Patripam K. R, R.S. Des, Y. Bar-SHatom, R.B. WasHsurn. A relaxation Algorithm for the
Passive Sensor Data Association Problem, Proceedings of the 1989 ACC.

2. NacaraanV., M.R. CHipamBaRra, R.N. SHarmva. [EEE Proc.,134, Pt. F, 1987, Nel, 113-118.

3. Emre E., J. Seo. IEEE Trans. on A& ES, 25, 1989, Ne4.

4. HaLc D. L. Mathematical Techniques in Multisensor Data Fusion, Artech House, Boston,
1992.

5. Garey M. R., D.S. Jonson. Computers and Intractability ( A Guide to the Theory of NP-
completeness), W.H. Freeman, 1979.

6. Bourceois F., JC. LassaLLe. Communication of ACM, CERN, Geneva, 14, 1971, Ne12.



