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Abstract. In distributed sensor networks (DSN), a set of nodes implements two 
roles: a) to collect and process data from local sensors and b) to communicate with 
other nodes. When communicating data is received at a given node this data have to 
be fused with the local processed data for achieving improved state estimate for 
tracking targets. In this paper an attempt is made for derivation of fusion formula in 
its full extent for fusing information from arbitrary number of nodes. 
Keywords: distributed sensor network, multisensor multitarget tracking. 

 
1. Introduction. More then a decade, there has been growing interest in distributed 
estimation problems. The traditional approach in estimation using information from 
multiple sensors has been centralized [1]. The measurements generated by all sensors 
is assumed to be sent to a central computer where processing is carried out. In 
contrast, in distributed sensor network (DSN) a set of local processors perform 
tracking  functions using the local sensor data. In addition, each local processor (or 
estimation node) communicates the processing results to other estimation nodes 
according to some communication strategy [1], [2], [3] and to some network 
architecture [5]. The centralized approach is known to be optimal [2],[4],[5] since 
central processor gather and processes all raw measurements. On the other hand, DSN 
approach has some advantages over centralized approach: a) it is reliable since there 
is not a single central site whose failure may doom the entire system; and b) 
communication is cheaper since the processed results, and not raw measurements, are 
communicated. This processed results are, as a matter of fact, information state, i.e. 
state distributions and probabilities. And an appropriate objective for fusion in DSN 
case is to reconstruct the optimal information state based on the information states 
received from the other nodes. In this paper we propose derivation of more suitable 
form of the fusion formula for arbitrary number of information processing nodes in 
comparison with [3] and [4] 

The structure of the paper is as follows. In Section 2 we describe the 
information fusion problem. In Section 3 we derive the fusion formula for arbitrary 
number of nodes to be fused. In the last Section 4 we propose a discussion. 

2. Problem formulation. We state the information fusion problem faced by 
each information processing node. Let { }n,...,2,1N =  be a finite set of such 
processing nodes and S be a finite set of sensors (or information sources). Each 
processing node receives measurements from a set of local sensors and never share 
any sensor of this set with another processing node, i.e. if  m and  n are two 
processing nodes and Sm and Sn are their own local sensors sets, our assumption is 

∅=∩ nm SS . 

We assume that node i receives  a measurement  z(t,i)  from one of its local 
sensors at time  iTt 0∈  and at time  jiTt ∈  receives information from node  j. The set  
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T0i is observation time set and the set  Tji  is reception time set.  Additional notation is 
the set  Ti  of time instants at which the information of node  i  changes, i.e. 

� im
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jii TT

=

=   

and more common set   
� N

i
iTT

1=

=  

of time instants when changes of information occur for some node in the system. 
Now two important assumptions follows concerning measurements and 

communication processes. 
Concerning measurements. The measurements are conditionally independent 

given the estimated process  x(.). Particularly, to denote with  J  the set of all 
measurement indices, i.e. 

( ){ }Ni,Tti,tJ i0 ∈∈= . 

Then for any arbitrary subset  A  of  J  the random measurement vector  
( ) ( ) ( )( )Ai,t,i,tzAZ ∈≡    satisfies  

( ) ( )( ) ( ) ( )( )
( )
∏

∈

=∈
Ai,t

txi,tzpTt,txAZp . 

This assumption helps as to completely characterized the observation process 
by the conditional probabilities (or probability densities)  ( ) ( )( )txi,tzp . 

Concerning communication. We assume that the information transmitted 
between the nodes is conditional probabilities (or the sufficient statistics) of the 
process  x(.). It can be shown [1] that the probabilities are conditioned on the 
cumulative local measurements plus the measurements from the nodes from whom 
messages have been received. 

To include some additional notations. The couple (t,i) defines the moment 
when information for node i changes. The change may occur because of 
measurements reception or of information transmitted from another node. To define 

( ){ }ii Tt,i,tK ∈=   for  N,,1i �= , and 
� n

1i
iKK

=

= . 

The  K  can be accepted as a total index set of all important events in DSN. 
For each index (t,i) in K , a subset  ( )i,tJ   of  J  is the cumulative measurement index 

set for node i at time t if all the measurements indices in  ( )i,tJ   are available to node 

i by direct observation or via transmitted information. The sets  ( )i,tJ  satisfies some 
properties as follows:  

a) For fixed  i , if  ts < , then  ( ) ( )i,tJi,sJ ⊆ . 

b) If  ( ) ( ) ∅≠∩ i,tJi,sJ , this specifies common information because of 
communication in the past, but this common information at node i may not be a 
cumulative measurement index set  ( )k,rJ   for any  (r,k)  in  K. 

c) Suppose  st  ,rt >>  and  t  is a transmission time from  j  to  i,  than  
( ) ( ) ( )i,tJj,sJi,rJ ⊆∪ . 

Finally, the actual measurement information to the node  i  at time  t  is 
represented by the  cumulative measurement vector 

( ) ( ) ( ) ( ){ }i,tJj,s,j,szi,tZ ∈= . 



3. Formula derivation. In this section we propose derivation of the fusion 
formula for arbitrary number of measurement vectors Zi. and for static estimation 
problems. Our goal can be summarized in the next way: to compute  ( ) ( )( )i,tZi,typ  

as new measurements arrive or when messages are received from other nodes. When a 
sensor measurements is obtained, updating is straightforward using Bayes' rule. 
When, however, the node i  receives the conditional probabil ity ( )( )j,sZyp  from 

node  j, updating is more complicated. In particular, ( )( )j,sZyp   may contain 

information previously originating from node i. To compute, for example, 
( ) ( )( )j,sZi,tZyp ∪  it is necessary to remove the redundancy in the two probabil ities. 

Here we assume the random process is static, i.e.  ( ) xtx =  for all  t. In [1] the 
fusion formula is derived for two measurement subvectors  Z1  and  Z2 defined on 
given measurement index sets  J1  and  J2  (Lemma 1): 

( ) ( ) ( )
( )21

21
21 ZZxp

ZxpZxp
CZZxp

∩
=∪       (1) 

Replacing in the upper equation  Z2  with  32 ZZ ∪  the fusion formula for 

three subvectors can be derived (Lemma 3 in [1]). 
Now, we start with the proof of the next form of the fusion formula for 

arbitrary number of measurement subvectors Zi: 
Suppose  Z1,Z2,…,ZN  are measurement subvectors defined on given 

cumulative measurement index sets  J1, J2,…,JN  of  Z. Then 
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Notation  ∏








k

N

ii k1

�
means multiplication of all possible combination of  k  

subvectors out of  N  in conditional probabilities  p. 
Proof 
Firs, following the proof of Lemma 1 in [1] we can express normalization 

constant C as: 

( )
( ) ( )
( )21
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21 ZZp
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1
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∩
⋅

∪
=       (3) 

Replacing  C  from (3) in (1) and rearranging the multipliers we obtain the 
next form of fusion formula for two measurement subvectors: 
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Now, reminding that  ( ) ( ) ( ) ( )BpABpBpBAp =  is probability of events  A 

and B  to occur simultaneously to accept for convenience the next notation 

( ) ( ) ( ) ( ) ( )B;ApBpABpBpBAp == . 

Using this notation to rewrite the equation (1) 
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Here, as in Lemma 3 in [1] replacing  Z2  with  32 ZZ ∪  we obtain the fusion 

formula for three subvectors: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )323121

321321
321
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ZZZ;xpZpZ;xpZ;xp
ZZZ;xp

∩∩∩
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For the multiplier in the numerator  ( ) ( )322 ZZ;xpZ;xp ∪→  we apply the 

equation (5) directly. After replacement the denominator will be transform as 
( ) ( )( ) ( ) ( )( )312132121 ZZZZ;xpZZZ;xpZZ;xp ∩∪∩=∪∩→∩ . 

For the two sets in the parentheses in above equation we apply once more 
equation (5) and calling to mind that  ( ) ( ) 3213121 ZZZZZZZ ∩∩=∩∩∩  we 

obtain (6). 
Following the mathematical induction approach we assume that formula (2) is 

true for  N  measurement subvectors and will proof that it is true for  N+1 subvectors.  
First to rewrite (2) according to accepting notation as for two subvectors case 
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We will proceed as in three subvectors case replacing  ZN  with  1NN ZZ +∪ . 

To analyze increasing of the number of multipliers for every particular  k. For a given  

k  
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.  For arbitrary multiplier the mentioned above replacement will give 
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Applying equation (5) for probabilities corresponding to (8) we obtain 
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The conclusion is straightforward: for a given  k  any of the  
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multipliers is split into two multipliers for k-subvectors case and in addition one 
multiplier is created for (k+1)-subvectors case. To express this result for two 
consecutive values of index - k-1 and k 
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The horizontal arrow means that the second term remains in the same row and 
the vertical arrow means that the third term is added to the next row. It is clear that the 
number of multipliers for the given  k  will increase with 
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Adding this increment to the 
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Now we can replace in (7) 







k

N
  with  







 +
k

1N
  in the multiplication symbol 

in the brackets. To consider the case  k=N. Their is one term in this group which is 
split into two terms for case   k=N and one additional term for the new case  k=N+1, 
which correspond to replacing  N  with  N+1  in the multiplication symbol in front of 
brackets. Following this notations we receive the main result in this paper 
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And stepping back from the notations in deriving (5) we can rewrite the fusion 
formula for arbitrary number of measurements vectors containing conditional 
probabilities and normalization constant 
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where 
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which proves the formula (2). 



4.Discussion. The fusion formula for arbitrary number of information 
processing nodes have been proposed (without precise derivation) in [3] and [4]  
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 or another form 
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where  I  is the set of all immediate predecessors nods and  I   a subset of  I  of these 
predecessors which send information to the consider node. 

In the process of computation of this formula the mentioned above subsets of 
course have to be determined. This task, however, is naturally to be a part of an 
algorithm for computation of considered formula. Starting from equation (12) such an 
algorithm has to recover the valid intersections and next to discover to which nodes 
this intersections correspond. On the base of equation (12) we developed a compact 
recursive algorithm for computing the fused estimation. In this algorithm is assumed 
that there exist some routine for recovering whether given intersection is empty or 
not. In the next stages we include some steps of algorithm presented in [4]. This 
algorithm will appear in the following (companion) paper. 

5.Conclusions. A simple and rigorous derivation of fusion formula for 
arbitrary number of measurement vectors has presented in this paper. Derived formula 
is a base for constructing a compact recursive algorithm for its computation. In the 
mentioned formula a static case is considered.  this formulation is starting point for 
considering more common and more complicated case - dynamic estimation problems 
in DSN. For example, if we ignore the process noise and with beforehand 
extrapolation of estimates to a common time the presented derivation can be directly 
used. And with  some additional assumptions a most common formulation for 
dynamic estimation problems in DSN can be achieved. 
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