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Abstract. In this paper, an attempt to unify the IMM and the JPDA approaches 
in a common algorithm is presented. For tracking manoeuvring target in 
clutter, IMM-PDA algorithm can be implemented. It solves successfully the 
problems of tracking single target in clutter. When multiple targets in clutter 
have to be tracked, the JPDA algorithm is one of the cheapest solutions in 
terms of computational load. If we assume manoeuvring targets in clutter, 
however, we will need of an algorithm with features of IMM and JPDA 
algorithms at the same time. We consider the more simple case for IMM 
algorithm – two models, one of which is embedded in the other. The main 
drawback arises when the association probabil ities have to be calculated. To 
avoid combinatorial explosion due to the two state predictions for every track, 
we accept the next trade-off - we merge these two predictions, calculate 
association probabil ities and the respective super innovation and finally go 
back to IMM case spliting the super innovation into two innovations.  
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1. Introduction. The theoretically most powerful approach for tracking 
multiple targets in clutter is known to be MHT method. The MHT method, however, 
more often leads to combinatorial explosion and computational overload that makes 
implementation of MHT method questionable. In recent years, there is a strong 
interest in constructing algorithms capable to compute a ranked set of assignments of 
measurements to targets [4,5]. Such algorithms make MHT approach for the first time 
practically implementable. The development of an MHT program, however, is quite 
complex process. Therefore, an alternative of this approach can be JPDA algorithm 
with some features of Interacting Multiple Model (IMM) approach. This alternative 
deals with the most complicated case – manoeuvring targets in heavy clutter.  

For tracking a single manoeuvring target in clutter there are many descriptions 
of IMM-PDA algorithm [1,2,3], unifying the features of IMM and PDA algorithms 
respectively. The numerical results cited in many papers reveal a very good 
performance of this algorithm in terms of low probabil ity of target missing and, hence, 
successful track maintenance. In all IMM-PDA algorithm realisations PDA algorithm 
is embedded at some step in the IMM algorithm frame. No problems or ambiguity 
arises. When one tries to combine IMM and JPDA algorithms, however, some 
difficulties and drawbacks spring up.  
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A brief description of the IMM-PDA algorithm is provided in the next section. 
An attempt to develop the IMM-JPDA algorithm is exposed and the arising problems 
and drawbacks are discussed. In section 3, an IMM-JPDA algorithm is set out which 
overcomes discussing drawbacks. Finally, in Section 4, presented simulation results 
show a good behaviour of the algorithm in the moderate target density case. 

2. Problem Formulation. The IMM-PDA algorithm with two imbeded models 
includes the next steps [2]:  

Step 1. Computation of the mixed initial conditions for the filter matched to 
model  t: 

 a) the mixed state estimate 
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stp  are Markov model-switching probabilities and ( )1ks −µ   are the model 

probabilities computed at the time  k-1. 
b) computation of the corresponding covariance: 
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Here   ˆ  and ˆ 0ts xx are referred at time  k – 1. 
Step 2.   This step is performed in parallel (i.e. independently) for every of the 

model-matched filters and is referred to as PDA step. For every one of the filters the 
likelihood function is calculated as a joint probabil ity density function of the 
innovations: 
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V(k)  is the validation region,  m(k)  is the number of measurements falling in the 
validation region and  S(k)  is innovation covariance. 

Step 3.   This step is also a part of the PDA algorithm frame. First, the 
association probabilities are to be calculated 
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Next, the combined innovation is defined as a weighted sum of the  m(k) 
measurements’ innovations 
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At this point, the Kalman filter starts with the only exception – instead the 
standard form, the modified update equation for covariance P is used. 

The results of Kalman filter are the state  ( )kkx tˆ   and the covariance  ( )kkP t   

estimations. The last term of the output of model-matched filters is computed in the  
Step 4.   This is an IMM step. Here the model probabil ity is updated as 

follows: 
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Step 5.   This step is for output only. It gives the final result of the IMM 
algorithm – combined model-conditioned state estimate and covariance, according to 
the following equations: 
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Now, let us try to extend this algorithm in the next way: instead PDA (steps 2 
and 3) to include JPDA algorithm. JPDA algorithm begins with clusterisation. When 
clusters are formed, hypotheses generation is the next. The number of all feasible 
hypotheses depends on the number of the targets in a given cluster and on the number 
of the measurements in their validation regions. Every feasible hypothesis, lH , 

represents a particular way of measurements to targets association in the cluster. For 
every target, however, there exist several models, and hence, so many predicted target 
positions. We have to run the entire JPDA procedure with every combination of the 
models of all targets in this cluster. Therefore, another explosion of hypotheses arises. 
For example, if the cluster contains  m  targets and we use  r  models, the number of 
all possible combinations will be as many as  mr .  Even for moderate cases, this 
number is inadmissible.  

To avoid this drawback let us to look at the last step of the IMM-PDA 
algorithm. Using the probabilities of every one of the models calculated at the end of 
the scan, the overall estimate is obtained. However, at the step, when target predictions 
are determined and where we want to include the JPDA algorithm, these model 
probabilities are not yet calculated. Nonetheless, we can easily estimate the predicted 
values of these probabil ities before their computation [6]. Using the total probability 
theorem, we obtain: 
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Here  ( )1kt −µ  is the probabil ity of the model  t  computed at scan  (k-1),  stp  

is Markov model-switching probabil ity and the event that model  t  is in effect at time  
k  is denoted by  ( ) tMkM = .  Now, we can use these ‘predicted model probabil ities’ 
to merge the individual model state predictions. In this way, every single target will 
remain with one-state prediction and the hypothesis explosion wil l be avoided. 

3. The IMM-JPDA Algorithm Description. This algorithm starts with the 
same step as IMM-PDA algorithm, but in cycle for every particular target in the 
cluster. 

Step 1.   Computation of the mixed initial conditions for every target  i   and 
for the filter matched to model  t: 

a) mixed state estimate 
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Here, it is supposed that mixing probabil ities  i
tsµ   are already computed. 

b) mixed covariance estimate 
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Next, some JPDA steps follows.  
Step 2. State prediction and covariance prediction for every target and for 

every model are to be calculated. Therefore, we obtain 
( ) ( )  -  and  ˆ 00 ⋅− 1kkP1kkx t

i
t

i  

Step 3.  In this step, receiving the set of measurements at scan  k, a 
clusterization is performed. Further on, it is assumed that the algorithm will proceed 
with every particular cluster. 

At this point, in the traditional JPDA algorithm, hypotheses generation have to 
be performed. However, to avoid combinatorial explosion we include here our 
innovation, folowing next. 

Step 4. Calculation of ‘predicted model probabil ities’ [6]: 
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Now, the individual model state predictions are merged for every particular 
target: 
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Step 5.   We are now ready to continue with the hypotheses generation and 
hypotheses score computation. After generating all feasible hypotheses, hypotheses 
probability is computed by the expression 
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the cluster, TN  - total number of targets, FN  - number of false returns, nDN  - number 

of not detected targets. The step ends with standard normalisation 
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Step 6.   At this step, association probabilities are calculated. To compute 

for a fixed i  the probabil ity  ijp   that observation  j  originates from track  i   we have 

to take a sum over the probabil ities of those hypotheses in which this event occurs: 
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where  ijL   is a set of indices of all hypotheses, which include the event mentioned 

above, and  tN  is the total number of targets in the cluster. 

Step 7.   After association probabil ities computation, the JPDA algorithm 
continues as a PDA algorithm for every individual target. For every target the 
‘merged’  combined innovation is computed as follows 
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Step 8.   This is the last step of our description. At this step, our algorithm 
returns to the multiple models case by splitting ‘merged’ combined innovation from 
the previous equation. For every individual target and for every particular model the 
combined innovations are computed: 
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The last few steps of our algorithm fully coincide with the well-known IMM-
PDA algorithm [1] and wil l be omitted. 

4. Simulation results. For testing the presented algorithm we construct a range 
of scenarios with increasing complexity in terms of targets number and presence of 
clutter. The chosen scenarios include 2,3 and 4 targets with closely spaced and 
intercepted trajectories. The included clutter is modeled as a Poisson process with 
parameter Vβ , where β  is spatial false alarm density and V  is validation volume: 
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For every scenario two levels of clutter have been tested: with 1V =β  - 
moderate clutter, and 2V =β - heavy clutter. The received results can be summarized 
as follows: 

A. Scenario with 2 targets. 

The presented algorithm successfully tracks two closely spaced manoeuvring 
targets with crossing trajectories. The times for data processing per scan are much less 
than the threshold needed for real time implementation. 
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Table 1. Results for 2 targets scenario 

Vβ  Average time per 
cluster (sec.) 

Total time(sec.) Number of scans 
with clusters 

1 0.0088 0.78 89 

2 0.012 1.1 89 

B. Scenario with 3 targets. 

In this case the algorithm continues to track the targets successfully. Second 
level of clutter ( 2V =β ) decreases in some extent the speed of data processing (Table 
2) but the needed time per scan remains under the threshold, mentioned above. 

Table 2. Results for 3 targets scenario. 

Clusters with 2 targets Clusters with 3 targets Vβ  

Average 
time(sec.) 

Total 
time(sec.) 

Number of 
scans 

Average 
time(sec.) 

Total 
time(sec.) 

Number of 
scans 

1 0.016 0.55 35 0.062 4.27 69 

2 0.011 0.38 35 0.136 9.39 69 

C. Scenario with 4 targets. 

Table 3. Results for 4 targets scenario. 

Clusters with 3 targets Clusters with 4 targets Vβ  

Average 
time(sec.) 

Total 
time(sec.) 

Number of 
scans 

Average 
time(sec.) 

Total 
time(sec.) 

Number of 
scans 

1 0.03 0.06 2 3.94 331 84 

2 0.22 0.22 1 124.7 10598 85 

This case illustrates the limit of real time implementation of the presented 
algorithm (Figure 1). As it can be seen from the table above (Table 3) when clutter is 
of moderate level ( 1V =β ) the algorithm is yet capable to track these targets.  

            

Figure 1. Four targets with crossing trajectories and Poisson parameter 1V =β   for the 
left, and 2V =β  for the right picture. 

However, when the clutter arises ( 2V =β ), the processing time increases 
almost exponentially. In both cases of clutter level, when the formed clusters contain 
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no more than 3 targets, the tracking process performs without problems. But when 
number of targets in a cluster reaches four the processing time literally explodes. 

Additional experiments with five targets have been carried out, but even with 
missing clutter, when number of targets in a particular cluster reaches five, the 
processing time exceeds the threshold of about 5-10 seconds per scan.  

5 Conclusions. 
In this paper a new algorithm is presented unifying IMM and JPDA 

algorithms. The new algorithm is intended to track manoeuvring targets in clutter. For 
overcoming some drawbacks in putting together these two algorithms we allow an 
important trade-off – before hypotheses generation at a JPDA stage we merge two 
model dependent state predictions, avoiding in this way combinatorial explosion. In 
order to prove the algorithm capability to track manoeuvring targets in moderate and 
heavy clutter a range of experiments have been performed. The obtaining results 
confirm our expectations concerning the algorithm’s features. In the same time the 
limits of real time implementation of the algorithm is outlined: with two or three 
targets even in a heavy clutter algorithm proceed successfully. With four targets in a 
moderate clutter algorithm is capable to track manoeuvring targets. For more 
complicated cases, however, the algorithm fails to continue tracking because of real 
time limitations. 
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