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One Particular Program Realisation of JPDA Algorithm1 

L. V. Bojilov, K. M. Alexiev, P. D. Konstantinova 

Abstract.  
In JPDA-algorithm realisation, some particular problems have to be solved. They include 

clusterisation of the tracks, generation of all feasible hypotheses and optimisation of the numerical 
expressions for overcoming calculation drawbacks. These problems are not of theoretical 
importance. However, if they are not solved in a proper way, it will be very diff icult to tailor a 
workable JPDA algorithm. We expose practically useful algorithms for the problems mentioned 
above and discuss a simple optimisation scheme for numerical expressions in the program.  

1.Introduction. The Joint Probability Data Association (JPDA) algorithm is intended to 

deal with multiple targets in clutter, assuming dense target scenario [1,2]. This algorithm is a 

special case of the MHT method[2]. It is not so powerful as Multiple Hypotheses Tracking (MHT) 

approach, but it leads to much less computational load. When numerous targets present in 

surveil lance region, there is no need to process all of them in the JPDA algorithm frame 

simultaneously. As a first step at a given scan, say k, all existing targets have to be divided into 

separate groups (clusters). Every such a group will contain tracks with overlapping validation 

gates and shared observations. In this way, the dimension of the task of JPDA algorithm wil l be 

equal to the number of the tracks in a given cluster. The next important step is hypotheses 

generation. Every hypothesis lH  represents a particular way the measurements in a cluster are 

associated with the targets. In addition, for every hypothesis the probabil ity  ( )lHP   of being true 

has to be calculated. Our attention to the hypotheses generation and probabil ity calculation is due 

to the fact, that this is one of the most time consuming parts of the overall JPDA algorithm. In one 

of our numerical tests with four targets and ten observations in the cluster, the generated feasible 

hypotheses have reached the number of 378. It is obvious, that even in middle-sized problems the 

combinatorial explosion may overwhelm the calculations. 

In the next section we outline in brief the PDA algorithm and point out its extension to 

JPDA algorithm. The parts of the JPDA algorithm needed to be optimised are identified and the 

motivations for these efforts are discussed. In the third section all improvements of the JPDA 

algorithm are expressed and considered: the hypotheses generation; optimisation of the 

hypotheses’ probabil ities computation; and heuristic formula for false targets density calculation. 

2.Problem formulation. The PDA approach was first presented by Bar-Shalom and Tse 

[3]. In contrast to nearest-neighbor and strongest-neighbor approaches, the PDA is all-neighbors 
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approach. The PDA tracks targets by using the weighted average of the innovations of all 

measurements in the gate. Following  S.BLACKMAN [2] The main steps of the algorithm can be 

stated  as follows: 

Assuming that false targets are presented and their probability density is β . Given N  

observations within the gate, there are  N+1  hypotheses that can be formed. The first  

hypothesis ( )0H   is the case in which none of the observations is valid. The probability of  0H  to 

be true is proportional to  
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Here  ij
T
ijij zSzd ~~ 12 −=  is squared normalised distance between observation  j  and target  i , S  

is residual covariance matrix,  β  is spacial density for false measurements and  DP  is probabilty 

for target detection. 

At last, through normalization we compute the probabil ities of all  N+1  hypotheses: 
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This is the first main step of the algorithm. The next step is to compute the combined 

innovation of scan k for use in the Kalman filter update equation: 
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The last step in the PDA algorithm include standard Kalman filter equations with the 

modified update equation for covariance  P.  This modification is intended to reflect the effect of 

uncertain correlation.  

The JPDA algorithm is an extension of the PDA method but for dealing with multiple 

targets. The only difference is the computation of the association probabil ities of (3) by using all 

observations and all tracks in a cluster. 

 The first step of this extension is clusterisation of all targets in the surveillance region. 

The typical example of such a cluster is shown in fig.1. All three tracks in the cluster are with 

overlapping validation regions and shared observations.  
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The next step of the JPDA extension is to generate all feasible hypotheses. Every feasible 

hypothesis, lH , represents a particular way the measurements in a given cluster have to be 

associated with the targets.  The feasibility of the hypotheses requires that: 

• Each target generates only one measurement (which may or may not be detected); 

• Each measurement corresponds to only one target. 

The third step (of the JPDA extension) is to compute the probabilities of the generated 

feasible hypotheses. The multipliers in the expression for probabilities computation correspond to: 

β  - probability density for false returns, 

( )DD P1P − ,  - probability of target detection and target missing respectively, 

( ) S2
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=  - probability density that measurement  j  originates from target  i. 

With some additional notations concerning one particular cluster 

MN  - total number of measurements, 

TN  - total number of targets, 

FN  - number of false returns, 
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nDN  - number of not detected targets, 

the common view of the probabil ity expression will be 
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In the above expression, the number of multipliers ijg  is equal to ( )nDT NN − . This step 

ends with standard normalisation 
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        6  , where HN  is the total number of hypotheses. 

The final step of the JPDA extension is association probabil ity  computation. To 

compute for a fixed  i  the probability  ijp   that observation  j  originates from track  i   we have to 

take a sum over the probabil ities of those hypotheses in which this event occurs: 

( ), ∑
∈

=
jLl

lij HPp  

where  jL   is a set of numbers of all hypotheses, which include the event, mentioned above. It is 

obvious that for a fixed  i   ( ) 0=∩ nm LL   for indices of all measurements in the validation region 

of target  i . On the other hand, for a fixed  i ,   all hypotheses wil l be included in computation of  

ijp . Because of that and due to  (6), the sum of probabil ities  ijp   for a fixed  i   adds up to unity. 

With this step the JPDA extension loop terminates and the algorithm continues with the 

computation of the combined innovations (4) of the standard PDA. 

3.The JPDA program optimisation. The main drawback in JDPA algorithm 

implementation, in spite of all , is computational load, especially in the case of many closely 

spaced targets and big clusters and in the presense of clutter. Our efforts in this work are directed 

to optimisation of calculations in some points of the JPDA extension’s steps. 

Probability expression optimisation. Let’s to assume that  TM NN >  and to consider the 

expression (5). It can be rewritten as follows: 
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It can be easily seen that the factor out of the brackets is common factor appearing in all 

members of a sum in (6) and so, it will be cancelled. In view of this, we can miss this factor in (5) 

saving, in this way, redundant multiplications. In the opposite case, when  MT NN > , the common 

factor will be  ( )( )MT NN
DP1 −−  and analogous operations can be performed. 
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A heuristic formula for false density calculation. Using the nonparametric PDA,  one can 

replace the spatial density  β   with the expression of so called  sample spatial density [4]: 

         
( )
( )kV

km=β  ,  where  ( )km   is the number of measurements in the validation region, 

and  ( )kV   is the volume of this region. In the JPDA algorithm, however, there are several targets 

in the cluster with validation regions overlapped and with shared measurements. In this case, the 

sample spatial density will be expressed by: 
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β  ,  where  MN   is the total number of measurements 

in the cluster and in the denominator is the total volume of all validation regions without 

duplicating the overlapping parts. To calculate the exact total volume of all targets in the cluster in 

practice is rather difficult. We propose here an easy to be calculated heuristic formula, which 

proved to be a good approximation of the above expression in many numerical experiments: 
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The motivation of this formula is that we allow duplication of the overlapping parts in the 

denominator, but we allow duplication of the shared measurements in the numerator too. The 

numerical experiments confirm  that the proposed formula is a good approximation of the sample 

spatial density. 

An algorithm unifying both hypotheses generation and hypotheses probability 

computation. An important and most time-consuming part of the JPDA algorithm is hypotheses 

generation and hypotheses probability computation. The proposed here algorithm computes 

hypothesis probability simultaneously with its generation. We will illustrate our idea by using an 

example. Table 1 sumarize the information describing scenario from fig 1. 

Table 1. 

Target 1 Target 2 Target 3 
0 ( )DP1−β  0 ( )DP1 −β  0 ( )DP1 −β  

1 
11D gP  3 

23D gP  5 
35D gP  

2 
12D gP  4 

24D gP  6 
36D gP  

3 
13D gP  5 

25D gP    
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Every target covers two columns. The first column contains the numbers of measurements 

falling in its validation region. The second column contains the multiplyers which have to be 

included in the optimized expression (7) when the target and the measurement are associated in 

corresponding hypothesis. For example, to list the first several hypotheses and their respective 

probabilities using Table 1: 

0 0 0 - ( ) ( )D
2

D
2 P1P1 -- bb , 

0 0 5 - ( ) 35D
2

D
2 gPP1 −β , 

0 0 6 - ( ) 36D
2

D
2 gPP1 −β , 

0 3 0 - ( ) ( )D23DD P1gPP1 −− ββ , 

0 3 5 - ( ) 35D23DD gPgPP1 −β , 

0 3 6 - ( ) 36D23DD gPgPP1 −β . 

It can be seen that the probabilities of every two hypotheses for the most inner cycle differ 

with one multiplier and we can compute every of these expressions by means of one 

multiplication only. For every new value of the index of upper next cycle an additional 

multiplication can be performed. So, a significant reduction of needed multiplications can be 

achieved in computing hypotheses probabilities, if construct an algorithm in which every time 

when index of the most inner cycle runs, the value computing up to this cycle to be saved 

unchanged.  

For estimating the reduction of calculations by implementing this idea to assume N groups 

(targets) of elements (measurements) with N21 nnn ,,, �  elements in every group. To assume too, 

that every possible combination is feasible. The scores (or probabilities) of all possible 

combinations can be computed by performing ( )1NnnnM N21 −= ,,, �  multiplications. If we use 

the mentioned above idea, however, a simple formula can be derived for needed number of 

multiplications: 

( )( )( )( )⋅++++=′ −
��

N1N4321 n1n1n1n1nnM  

It can be noticed that M ′  reaches its minimum when groups are ordered so, that number of 

their elements monotonically increase. In order to estimate the reduction ratio we assume an 

additional simplification that the number of elements of  all N  groups is equal to  n. After some 

simple transformations we obtain: 
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If we realize, for example, the case, when  N = 5  and  n = 5, the reduction ratio will be 3.2 

and we can expect, that this value is lower bound in comparison with the most common case. Let 

us consider the case when in five groups (N=5) the number of elements are 3, 4, 5, 6 and 7 

respectively. The common number of elements in all five groups will be the same, as in the 

previous case, but reduction ratio will be now equal to 3.4. The most easily, this algorithm can be 

implement as a recursion. 

4.Numerical results. In order to verify our ideas we have carried out a series of numerical 

experiments with program realization of the described above algorithm. We construct a typical 

scenario for targets’ motion, including five targets moving along five parallel and closely spaced 

trajectories(fig.2). In the beginning of the process targets are so separated that their validation 

regions do not overlap. The most appropriate model of the number of false alarms in a volume V is 

given by binomial distribution 

( ) ( ) mNm p1p
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where N is number of resolution cells in this volume an p is probability of false alarm in each cell. 

But in view of computational diff iculties more suitable model is Poisson distribution which is 

known to be a good aproximation of binomial distribution when p (or 1-p) is less then 0.1[4]: 
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V ββ−= . 

Here the Poisson parameter  β  is the sample spatial density, defined as  
V

m=β . 

 Because of the different velocities the five targets become moving closer end validation 

regions of some of them become overlapped. If in the overlapped volume fall a measurement the 

corresponding targets form a cluster. In the midle of the scenario more often four or five targets 

move in a cluster depending on randomly disposed false measurements.  

Table 2.  Floating point operations per cluster 

 1=β  2=β  

Number of targets 
in a cluster 

Nonoptimized 
version 

Optimized 
version 

Reduction 
ratio 

Nonoptimized 
version 

Optimized 
version 

Reduction 
ratio 

2 207 184 1.12 229 202 1.14 
3 747 629 1.19 2739 2189 1.25 
4 7599 5705 1.33 14772 10937 1.35 
5 35333 24290 1.45 151360 103598 1.47 
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We perform two series of experiments with 1=β  and 2=β  respectively. Averaging over 

ten runs for every one value of  β  we derive the number of floating point operations per cluster 

with 2, 3, 4 and 5 targets each. The results are given in the table 2. 

Even more informative is table 3, where for the same frame of experiments the processing 

time (in seconds) is summarized and averaged for every type of cluster.  

Table 3. Processing time (in seconds) for every kind of cluster 

 1=β  2=β  

Number of targets 
in a cluster 

Nonoptimized 
version 

Optimized 
version 

Reduction 
ratio 

Nonoptimized 
version 

Optimized 
version 

Reduction 
ratio 

2 - - - - - - 
3 0.0225 0.0213 1.06 0.068 0.0377 1.8 
4 0.423 0.1 4.23 0.51 0.19 2.68 
5 4.5 0.438 10.27 38.1 5.71 6.67 

 

The results from the table confirm the dependence of processing time on number of targets 

in the cluster, which prove to be near to exponential. On the other side, processing time depends 

on the number of measurements in the gate too. It can be noticed, as well, that reduction ratios in 

table 3 are much more impressive than reduction ratios in table 2. The difference can be explain 

that proposed optimization assumes more effective program code. 

5. Conclusions. In this appear some practical aspects of program realization of JPDA 

algorithm have been considered. Analyzing the algorithm steps three optimizations have been 

proposed. First end third optimization reduces the floating-point operations to be performed. Third 

optimization in addition enables more effective program code. The second optimization 

overcomes difficulty to compute the sample spatial density. Numerical experiments show that the 

proposed trade-off in computing this density does not lead to association probability degradation. 

As a result, the program realization of the JPDA algorithm demonstrates considerable speed up of 

its work and improved performance. 

REFERENCES: 

[1] BAR-SHALOM, Y., THOMAS E. FORTHMANN, Tracking and Data Association, San Diego, CA, 

Academic Press, 1988; [2] BLACKMAN S. S., Multiple-Target Tracking with Radar Applications, 

Norwood, MA, Artech House, 1986; [3] BAR-SHALOM, Y., E. TSE,  Tracking in a cluttered 

inveronment with probabilistic data association, Automatica, Vol. 11, Sept. 1975, pp 451-460. [4] 

BAR-SHALOM, Y. and  XIAO-RONG  LI,  Multitarget-Multisensor Tracking: Principles and 

Techniques, Storrs, CT, YBS Publishing, 1995; 



 9 

 


