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Abstract. In recent years there is strong interest in computing a ranked set of assignments of measurements to targets. 
In this report we propose the results of our investigations of two approaches for finding K-best ranked assignments for 
implementation in multitarget tracking. The first approach includes formulation of data association problem in 
multitarget tracking as a classical assignment problem, partitioning of all possible solution of this problem and also 
solving of range of modified forms of the starting problem or its sub problems. The second approach uses different 
frame describing the association problem as a table with rows and columns corresponding to measurements and 
targets. The sells of the table are fil l with the association probabili ties (densities) of any measurement with a given 
target. The comparison is made on the base of intensive numerical experiments. 

 

1. Introduction. 

A strong interest in recent years in determining a 
ranked set of solutions to assignment problem is 
connected with the possibility of this approach to be 
used in solving data association problem in 
multitarget tracking. The seminal algorithm for 
determining the ranked set of assignments is due to 
Murty [Murty]. On the base of optimal solution 
Murty suggests partitioning of all possible 
assignments of the problem. A range of subproblems 
are solved for finding the second best assignment. 
This second best assignment is used for another 
partitioning an so on. Recently, Miller, Stone and 
Cox have proposed an optimized algorithm of Murty 
achieving a considerable speedup 
[Mil&Stone&Cox]. 

Danchick and Newnam [Dan&New] have proposed 
an algorithm, which is based on the recognition that 
after determining the best assignment, to determine a 
ranked set of assignments may be accomplished by 
solving a series of modified copies of the initial 
assignment problem. Their suggestion is that the 
proposed algorithm makes Multiple Hypotheses 
Tracking (MHT) practical for the first time. 

Different approach is used by Nag. Chin. Sharma 
[Nag&Chin&Sh]. They construct a probabili ty table 
with rows and columns corresponding to 
measurements and targets. The sells of this table is 
fill with probability for any one measurement to 
originate from any one of the targets. Of course, 
using a gating technique some of the sells remain 
empty. The last column contain the probabilities for 
any measurements to originate from a new target. 
Dividing any row with the last element (new target 
sell) authors construct another table - probability 
ratios table. From this table they derive the preferred 
measurement table containing in any column the 
indices of all measurements falling in the target gate, 
sorted by their probability ratios. Now on, the 
algorithm proceeds with the last table originating the 
first K-best association hypotheses.  

 
2. Problem formulation.  

The investigated here algorithms are of two different 
types. We will expose the main ideas of these 
algorithms and will set forth the most important their 
steps. We will refer to the first algorithm as Murty's 
algorithm and to the second - Ngarajan's extended 
algorithm. The first algorithm is due to Katta Murty 
[Murty] and is the seminal algorithm in direction of 
finding firs K-best assignments of the classical 
assignment problem. The second algorithm is based 
on the frame proposed by Ngarajan et al. in 
[Nag&Chin&Sh] and extended in our paper [LVB]. 
The extended algorithm includes two optimizations 
of the original algorithm which produce a speedup of 
over a factor of 200.  

 
2.1. Murty's algorithm.  

This algorithm deals with the classical assignment 
problem. If a cost matrix of the task is  n×n there 
exist  n!  possible combinations. To denote the set of 
all possible combinations with  A  and one particular 
combination or assignment with  a(k). A numerous 
algorithm have been proposed for finding the optimal 
solution (say, minimal) of the assignment problem 
[Survey]. In our experiments we have used extended 
version of Munkres algorithm due to Bourgeoas and 
Lassalle [Bur&Lass]. The core idea of the author is 
to partition the set  A  into subsets  A1, A2,…at given 
level and to find the best solution in any of the 
subsets which are mutually disjoint: 

     , jiAA ji ≠∅=∩ . 

Algorithm starts with finding the optimal solution 

a(1) with the indices ( ) ( ) ( )[ ]n21 j,n,,j,2,j,1 �  

. The task is to find the best solution among the set of 
assignments remaining after excluding the optimal 

assignment  ( ) ( ){ }1a/A2a ∈ . Starting with the 

first element of the solution a(1) we exchange it with 
unacceptable big value, so constructing a copy of 
initial matrix. If we solve a new assignment problem 
it is clear that all possible assignments with this 
element will be excluded from the decision. The new 
optimal decision will be the best decision among all 
assignments which number is 

( ) ( )( )!1n1n!1n!n −−=−−  



The next step is to repeat the same steps to the 
remaining  (n-1)!  assignments. We withdraw from 
the initial matrix the row and column corresponding 
to the first element and so ensuring its participation 
in the subsequent decisions. We reconstructing 
remaining sub matrix in the same way - we exchange 
it with unacceptable big value and repeat the same 
steps as above. In that way we obtain the best 
solution among  (n-2)(n_2)!  assignments out of  
remaining above  (n-1)!. Continuing like this we 
reach the matrix with dimension  2×2  and finding its 
solution we terminate the stage of obtaining the 
second best solution. In this stage we have just found  
(n-1)  best solutions in  (n-1)  mutually disjoint 
subsets of  A  and their union is 

( )( ) ( )( )
1!n!11!22
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In this union the only missing combination is optimal 

assignment, i.e. it is equal to the set  ( ){ }1a/A . 

The best solution among found  (n-1)  is the second 
best solution in our problem. Repeating the steps of 
this stage with some additional rules we can find 
predetermined number of first  K-best assignments. 

 
2.2. Ngarajan's extended algorithm. 

In this algorithm a different approach is used. This 
approach is directly derived from a multitarget 
tracking problem. Let to consider a given tracking 
problem with  N  tracked targets. To assume  M  
measurements are received at a given scan. We can 
construct a table with columns corresponding to 
targets and rows corresponding to measurements 
referred to as probabil ity table. The sells of the table 
contain the probabili ties (or probability densities, or 
their logarithms) the given measurements to originate 
from corresponding target. There is additional 
column corresponding to the hypothesis that no one 
target raises a given measurement and it is originated 
from a new target. A preliminary assumption is that 
the probabili ty of association any measurement with 
a new target is definitely less then the probability of 
associating it with a known target. If we divide every 
row by its last element we receive a probability ratios 
table. To accept that probability ratio in any sell of 

the latter table is  ( )mt,mp . Our task is to find a 
�������	� ��
��� � � ������������ ��� � �����! ���#"�$# ��! ���#�!� �% �& �$('

target with highest probability 
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To simplify the procedure of hypotheses generation 
we construct a new table - preferred measurement 
table: 

T A R G E T S  Preference 
index T1 T2 T3 T4 

0 5 7 7 1 
1 4 8 3 5 
2 3 5 2 2 
3 6 3 8 8 
4 8 2 4 3 
5 1 6 6 - 
6 - 4 - - 
7 - 1 - - 

This table correspond to an example with four targets 
and eight measurements in their validation regions. 
The most left column contain the preference index 
and al the rest four columns correspond to any one of 
the targets. Any of these columns contains the 
numbers of the measurements falling in validation 
region of corresponding target sorted by their 
probabil ity ratios to originate from this target. For 
example the highest probabil ity hypothesis is  

( )1,7,7,5  , however it is unfeasible: any 

measurement can be associated to one target only. 

Another hypothesis can be ( )1,3,7,5 , which is 

feasible. For convenience to express hypotheses as a 
sequence of preference indices: the highest 

probabil ity hypothesis wil l be  ( )0,0,0,0  and the 

next hypothesis  ( )0,1,0,0 . It is obvious that any 

one hypothesis can produce four different hypotheses 
every one with less probability then the origin. On 

the other hand, for the two hypotheses  ( )1,0,1,0   

and  ( )0,2,1,3   no conclusion can drown regarding 

their probabil ities. Using this frame the authors of 
[Nag&Chin&Sh] construct un algorithm of quick 
generation of hypotheses dividing them into two 
lists: a) feasible hypotheses in 'candidate hypotheses 
list', and b) unfeasible hypotheses in 'retained 
hypotheses list' for future processing. In addition, if 
consecutive hypothesis can be derived from any of 
the hypotheses out of the 'candidate hypotheses list'. 
If it is so, we discard it. If not, we check if this 
hypotheses for feasibility. If it is feasible we add it to 
the 'candidate hypotheses list' and compute their 
probabil ity, of not, we include it to the 'retained 
hypotheses list'. As a result the authors achieve 
considerable reduction of processing time, avoiding 
generation of numerous hypotheses and avoiding 
computation of their probabilities. In our extension 
we manage to cut down positions for hypotheses 
generation and achieve additional reduction of 
processing time.  

 
3.The experiments' frame. 

For our experimental investigation we construct the 
next frame. In a square surveil lance field we place in 
random manner  n  targets using the random 
generator of the computer. From the coordinates of 
any of the targets using predetermined  σ   and 
Gaussian random generator place  n  measurements 
and in addition  k  false alarms is drown, or  

knm +=   measurements. We choose the  σ   
large enough to construct scenario with overlapping 
validation regions and shared measurements. We 
produce a range of such scenarios solving the 
problem of finding K-best assignments using the 
Murty's algorithm. Starting with the same value of 
random generator seed we produce the same range of 
scenarios solving any problem of finding firs  K-best 
associations using Nagarajan's extended algorithm. 

The structure of data of the latter algorithm ensure 
obtaining decision in which a new targets 
probabil ities are included and so, at any scan we can 
distinguish correctly updated targets and new targets. 



To achieve the same result with the Murty's 
algorithm we have to construct the cost matrix of the 
problem in a special way. In this particular 
investigation we fil l up the probability table (the first 
table) of Nagarajan's extended algorithm and the cost 
matrix of Murty's algorithm with negative logarithms 
of the probabili ty densities of measurements and so 
the best hypotheses (and assignments) are hypotheses 
with the least values. The cost matrix of the Murty's 
contains three sub matrices. The left upper is square  
m×m  diagonal matrix containing in its diagonal 
elements  negative logarithms of probability densities 
any of the measurements to originate from a new 
target. The right upper is rectangular  m×n  matrix 
containing negative logarithms of probability 
densities of any of the measurements to originate any 
of the targets in which validation region the 
measurement is fell in. The third matrix is also 

rectangular with dimensions ( )nmn +×   and is 

placed below the firs two matrices. This matrix 
contain only elements with unacceptable high values 
and serves to add up the cost matrix to square matrix. 

The frame of our experiments is, in some extent, 
different compare to most common used. Most often, 
the considered matrices are fil led up directly with an 
array of random numbers. In our approach our 
matrices and tables are fil led up with the values 
drawn from a particular multitarget scenario even 
though constructed in a random manner. The latter 
approach leads to tasks which are more close to real 
world problems. The only drawback using this 
approach is when the algorithms have to be 
compared with different levels of sparsity, whereas, 
in the former approach it is straightforward to receive 
exact the requisite percent of sparsity of a matrix. We 
avoid this drawback defining only three levels of 
sparsity controlli ng them with different values of σ . 

4.Simulation results. 

We have performed two groups of experiments. In 
the first group we choose the parameters of the task 
(standard deviation  σ ��� ��� ��� �	� 
������
���� � � ��������� �
ensure low level of sparsity of the matrices' sells (i.e., 
high level of filling up - more then 66 percent). In the 
second group of experiments the level of sparsity is 
high - the filling up is no more then 25 percent. The 
experiments in the two groups are with three 
different dimensions of the tasks. For Ngarajan's 
extended algorithm the notation  n/m  means that the 
algorithm search the first K-best hypotheses in a 
table with  n  columns and  m  rows. For the Murty's 
algorithm the same notation means that the algorithm 
search the first K-best hypotheses in a square matrix 

with dimension  ( ) ( )mnmn +×+ . The results 

of the experiments are given in the tables below. 
Every value of the tables is averaged over the 50 
Monte Carlo runs. For every set of runs for every one 
of the compared algorithms the same random number 
streams were used.  

First group of experiments concerns scenarios with 
low level of sparsity. The numerical results are given 
in Table 1 and Table 2. As it can be seen, in more 
cases Murty's algorithm outperform Ngarajan's 
extended algorithm. An exception is the times for 

finding the first 100-best hypotheses (the last 
columns in the firs two tables). So, for low level of 
sparsity Murty's algorithm is preferable especiall y for 
scenarios with higher dimensions. 
 
Table 1. Times in seconds for the Murty's algorithm 

Number of hypotheses generated Scenario 
dimension 10 20 50 100 

9/16 0.02 0.043 0.122 0.283 

10/18 0.08 0.058 0.142 0.351 

11/20 0.047 0.08 0.207 0.44 

12/22 0.077 0.105 0.259 0.568 

 
 
Table 2. Times in seconds for the extended algorithm 

Number of hypotheses generated Scenario 
dimension 10 20 50 100 

9/16 0.087 0.099 0.069 0.087 

10/18 0.151 0.149 0.115 0.196 

11/22 0.283 0.262 0.334 0.48 

12/22 0.531 0.513 0.449 0.815 

 
The second group of experiments concerns scenarios 
with comparatively high level of sparsity - the fill ing 
up is no more then 25 percent. The results are given 
in Table 3 and Table 4. It is obvious that for this  
kind of scenarios the extended algorithm is superior 
in time processing to Murty's algorithm, especially 
for longer ranges of hypotheses to be found.  
 
Table 3. Times in seconds for the Murty's algorithm 

Number of hypotheses generated Scenario 
dimension 10 20 50 100 

9/16 0.02 0.037 0.102 0.241 

10/18 0.0.02 0.045 0.131 0.304 

11/20 0.034 0.0.068 0.169 0.358 

12/22 0.052 0.093 0.231 0.493 

 
 
Table 4. Times in seconds for the extended algorithm 

Number of hypotheses generated Scenario 
dimension 10 20 50 100 

9/16 0.004 0.005 0.008 0.012 

10/18 0.027 0.017 0.013 0.024 

11/20 0.04 0.033 0.051 0.041 

12/22 0.093 0.085 0.07 0.078 

From the results of the two groups of experiments  
the overall conclusion can be drawn as regard to 



work of the compared algorithms. The Murty;s 
algorithm is less sensitive to the dimensions of 
solving problems whereas Ngarajan's extended 
algorithm is more sensitive from this parameter in 
any of the experiments. As regard to number of 
hypotheses to be found, extended algorithm, as it was 
referencing in our previous work [LVB] , shows very 
weak dependence on this number, whereas in the 
Murty;s algorithm this dependence is much stronger. 
As a final inference, the both algorithms can be 
successfull y implemented in problems where a range 
of firs K-best hypotheses have to be extracted. The 
Murty's algorithm is more appropriate for tasks with 
low level of sparsity whereas Ngarajan's extended 
algorithm is more acceptable for tasks with higher 
level of sparsity. 
 

5. Conclusions. 
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