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Abstract.  
 
In this paper we consider the capabilities of 

nearest neighbor as a criterion of data association to 
ensure correct decision in associating measurement to 
target. We continue the work started in our previous 
paper to establish analytical approach end to derive 
explicit expressions for calculating correct data 
association probability for different levels of false 
alarm densities. Recurrent equation for correct 
association probability is derived. By means of this 
equation expressions for some particular values of FA 
densities are received. The correctness of the 
derivation is proved by the results of exhaustive Monte 
Carlo simulations.  

Keywords: target tracking, gating, false returns, 
noise level. 

 
1. Introduction.  
 
“Nearest neighbor” is the most simple, and in 

the same time, the most widespread rule (criterion) for 
data association in target tracking [2, 4]. The most 
popular suggestion for its implementation is that it is 
suitable for simple scenarios with low level of false 
alarms or without false alarms at all [2]. In our 
previous work [1] an attempt has been made to define 
more rigorously different ‘levels of false alarms’, used 
as a term very often in the target tracking literature. We 
have investigated how different number of false alarms 
per gate (as expected values) affects the filtration 
process when nearest neighbor as data association 
criterion is used. Relying on this investigation we have 
proposed four levels of false alarms: low level, 
medium level, high level and unacceptably high level. 

The nearest neighbor approach will associate 
correctly the true measurement only in the case when 
this measurement lies closer to the predicted position 
of the target than the false return. In the cited above 

previous work we have investigated by Monte Carlo 
simulation probability of  correct association in the 
cases when besides the true measurement in the target 
gate are fallen one, two, three et cetera false returns. In 
parallel, using calculus we have received the value of 
the probability for correct association in the case of 
two returns in the gate – true and false, and for one 
particular value of the gate threshold – 21.9G = . 
Value of this probability, calculated theoretically, has 
fully coincided with the value received from Monte 
Carlo experiments. In the current work we continue our 
efforts for derivation explicit expressions for 
mentioned above probability. In such expressions the 
gate threshold has to be an independent variable. 

 
2. Problem formulation.  
 
In target tracking gating [2, 3, and 4] is an 

important part of data association stage of the tracking. 
Gating is a technique for eliminating unlikely 
measurement-to-track pairings and very often is 
referred to as a coarse association [2]. By using 
predetermined gate threshold a gate is formed around 
the predicted track position (a solid line ellipse on 
figure 1). Assuming single target if a single 
measurement is fallen in the gate area than this 
measurement will be associated with the track for 
updating its track filter. If more then one return is 
fallen in the track gate (as in figure 1) the nearest 
neighbor correlation logic can be implemented. The 
problem posed for consideration is how can we 
calculate particular probability for correct association 

CAP  if besides the true measurement in the target gate 
are fallen one, two and so on false returns.  

Following the frame of the linear Kalman 
filter (KF) the measurement at scan k  is given by the 
equation 



( ) ( ) ( )kwkHxkz += ,   (1) 

where H  is a measurement matrix, ( )kx  is a target 

state vector and ( )kw  is zero mean, white Gaussian 
measurement noise with covariance R . Every cycle of 
KF starts with state prediction vector calculation 

( ) ( ) ( )kkx̂kFk1kx̂ =+   (2) 

where ( )kF  is transition matrix and ( )kkx̂  is 
updated state vector at the previous scan. Next step is 
to calculate the difference between the correlated 
measurement and its predicted position 

( ) ( ) ( ) ( )k1kx̂1kHk1kz1k ++−+=+ν  (3) 

referred to as residual vector or innovation with 
residual covariance RHHPS +′= , where P  is one 
step prediction covariance matrix. Now an important 
measure for closeness of a given measurement to a 
particular target can be obtain: νν 12 S'd −= . Taking 
in consideration the 2χ  (kai-square) distribution of 
this quantity an ellipsoidal region can be formed 
around the predicted state position 

Gd 2 ≤     (4) 
with threshold G  chosen to insure predetermined gate 
probability GP . 

Every measurement fallen in the gate area at a 
statistical distance d  from predicted state position 
forms an ellipse (dashed line in fig. 1). All points on 
this ellipse lie at the same statistical distance d  from 
the predicted position. It is obvious that every other 
return fallen inside the dashed ellipse (return f1 on the 
figure) will lie closer to the predicted position than 
measurement m . In this case the nearest neighbor rule 
will give incorrect association – it will correlate with 
the target the false return f1 instead the true 
measurement m .  
 

 
Figure 1. Gate area around the predicted position 

with three returns in it 

 
All this considerations suggest the simple way 

to express the probability that given a true 
measurement fallen in the gate the false return fallen in 
the gate too will lie at a greater distance [1]. Remind 
that the false returns are independent and uniformly 
distributed in the surveillance region, the probability 
that false return will be closer to the predicted position 
is exactly equal to the ratio of the volumes of two 
curves – dashed and solid line ellipses. The solid line 
and dashed line ellipses are defined by the equations 

GS 1 =′ − νν ,   and   21 dS =′ − νν . 

Reminding that the volume of an arbitrary 
hyperellipsoid [4] is given by 

2
1

n SGcV = , 

where nc  is the volume of unit hypersphere, for our 
2D-case the two volumes are 

2
1

s SGV π=    and   2
12

d SdV π= . 

And now, for the ratio of the volumes of the two 
curves and, hence, for incorrect association probability 
we have 

G
d

P
2
ij

IA =  

and, on the contrary, the probability that the false 
return will fall outside the dashed ellipse and so, the 
nearest neighbor rule will give correct association, is 
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Having in mind that the event ‘the false return 
is fallen outside the dashed line ellipse’ is independent, 
correct association probability when k false returns 
have been fallen in the gate is 

k2
ij

CA G
d

1P 









−= .   (6) 

 
3. Probability expressions 

derivation. 
 
We can express now statistical distance 

squared by its variables 
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where x  and y  are innovation’s coordinates (3) and 
2
xσ  and 2

yσ   – their variances (the main diagonal of 

the matrix  S ). As a common assumption, the true 
measurements are normally distributed around the 
predicted position and so, the probability density 
function of the vector ( )y,x  is two-dimensional 
Gaussian distribution 
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Here for simplicity we assume uncorrelated 
x  and y  , i.e. matrix S  is diagonal. Now we will try 
to derive an expression for the overall probability for 
correct association given a particular value of the gate 
threshold. For arbitrary number of false alarms 
derivation will start with the next integration 
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The integration is performed over the 
ellipsoidal volume E  (4) of the target gate.  

Implementing variable substitution 
x2

xu
σ

=  and 

y2
yv
σ

=  we have 
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Now integration is performed over the circle 

GC  with radius 
2
GR =  (equation (4)). The most 

straightforward way to continue integration is by 
coordinate transformation from Cartesian to Polar 
coordinate system with coordinates ( )ϕ,r : 

ϕcosru = ; ϕsinrv =   with 

( )πϕ 20;2Gr0 <<<< . 

Having in mind that Jacobian of this 
transformation is 

r
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we have for the new integral 
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and after direct integration over ϕ  we obtain 
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We will now derive recurrent expression for 
the above integral. As a first step to calculate the 
probability from (10) for the case 0k = , i.e. when no 
false alarms there are in the gate area 
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There is no surprise – the correct 
association probability for this case is exactly equal to 
the probability for a measurement to fall in the gate 
(gate probabilty GP ), given the gate threshold G .  

And for the recurrent expression one obtains 
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But in the above expression after the last sign 

of equality the integral has the same structure as kI  
with the only difference – the power of the expression 
in parentheses is 1k − , and so, the equation (12) can 
be rewritten as 

1kk I
G
k21I −−= .   (13) 



Using recurrent expression (13) and the result 
(11) we can now calculate the correct association 
probability for any integer as a value of k . Thereby, 
for a single false return besides the true measurement 
( 1k = ) the result is 
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For a two false alarms and a true 
measurement ( 2k = ) in the target gate as is on the 
figure 1 the correct association probability is 

( ) 







−+−=

−
2
G

2CA e1
G
8

G
41GP . (15) 

And the last result is for three false returns 
besides the true measurement ( 3k = ) 
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The last four expressions (from 13 to 16) and 
the result (11) are the main achievements of the 
presented paper. The explicit expressions for correct 
association probability may be used in different kinds 
of investigations for replacing exhaustive Monte Carlo 
simulations. Even though exhaustive, results of Monte 
Carlo simulation give us filling of certainty. So, 
following the opposite logic we can try to verify 
correctness of our derivation by estimating the 
probability of correct association for some particular 
cases implementing Monte Carlo simulation and 
comparing these results with the corresponding results 
directly calculated with the above expressions.  

 
4. Numerical experiments.  
 
For our experiments we chose five different 

values of gate thresholds and for every one value we 
investigate the probability for correct association with 
one, two and three false returns besides the true 
measurement. The values of gate thresholds and 
corresponding gate probabilities are: 

( )99.0P21.9G
1G1 == ; 

( )98.0P824.7G
2G2 == ; 

( )97.0P013.7G G3 == ; 

( )96.0P44.6G G4 == ; 

( )95.0P99.5G
3G5 == . 

When the frame of numerical experiments is 
constructed we have to be careful to not miss to model 
the event ‘the measurement is fallen in the gate’ with 
corresponding gate probability. In our experiments we 
have used simplified version of the Matlab routine 
given in [5] and realizing Desert-Musso algorithm for 
generating uniformly distributed points in 
hyperellipsoid (in our case – ellipse) for generating 
false alarms in gate area.  In addition, for equal base 
for comparison, the number of false alarms generated 
was not random Poisson value but exact quantity. 

 
Table 1. PCA according derived expressions 

 Gate threshold (Gate probability) 

m_fa 9.21 
(0.99) 

7.824 
(0.98) 

7.013 
(0.97) 

6.44 
(0.96) 

5.99 
(0.95) 

1 0.785 0.7495 0.7234 0.7018 0.683 
2 0.659 0.6168 0.5874 0.564 0.544 
3 0.5706 0.527 0.4974 0.4744 0.455 

 
The Table 1 gives results for correct 

association probability calculated with the expressions 
derived above. For comparison the table with the same 
stricture is filled up (Table 2) with the results of correct 
association probability obtained from exhaustive 
Monte Carlo experiments. Every one value in the table 
is averaged over 100000 Monte Carlo runs. 

 
Table 2. PCA obtained from MC simulation 

 Gate threshold(Gate probability) 
m_f

a 
9.21 
(0.99) 

7.824 
(0.98) 

7.013 
(0.97) 

6.44 
(0.96) 

5.99 
(0.95) 

1 0.7845 0.7493 0.7235 0.70199 0.6829 
2 0.6586 0.6168 0.5873 0.564 0.5438 
3 0.5703 0.5269 0.4976 0.4744 0.455 

 
In Monte Carlo experiments every loop 

includes measurement generation using Gaussian 
generator. Next, Mahalanobis distance is compared 
with the corresponding gate threshold G. If the 
measurement occurs outside the gate area, we add 
unity to the counter of bad cases. Else, predetermined 
number of false alarms are generated and if even one 
of them is closer to the predicted position of the target 
in comparison with the true measurement, once again 
the bad cases counter is increased by one. At the end of 
the cycle the correct association probability is 
calculated dividing the total number of MC runs 
(T_runs) minus bad cases (B_runs) by T_runs 

runs_T
runs_Bruns_TPCA

−= . 



 
5. Discussion.  
 
Comparison of the results from the two tables 

indicates the fully statistical coincidence for the 
corresponding correct association probabilities. 
Constructed recurrent frame (equations 11 & 13) give 
us opportunity, besides the equations (14-16), to derive 
an expression for correct association probability for 
arbitrary number of false alarms. 

It is interesting to be pointed out, that 
according the results from MC experiments cited in 
table 1 of [1] association probability for, say, 

1fa_m =  as an exact value is less then the 
corresponding probability for 1fa_m = , but 
accepted as an expected value for a Poisson generator. 
So, the probabilities calculated by the help of (14-16) 
are conservative estimation association probabilities of 
the real practice. 

 
Table 3. PCA for random number of false alarms 

G = 9.21 G = 7.824 G = 7.013 m_fa 
Appr. MC Appr. MC Appr. MC 

0.1 0.969 0.97 0.955 0.952 0.952 0.946 
0.2 0.947 0.95 0.93 0.934 0.924 0.923 
0.3 0.926 0.931 0.905  0.915 0.896 0.901 
0.4 0.904 0.914 0.88 0.895 0.868 0.88 
0.5 0.883 0.896 0.855 0.876 0.84 0.859 

 
Derived expressions (11) and (14-16) give 

probabilities for predetermined exact values of the 
false alarms per gate, per scan. But more realistic 
picture is to accept the given false alarm value as an 
excepted value of some distribution (e.g. Poisson or 
Bernoulli). We have noticed, however, that by the 
means of (11) and (14) one can calculate good 
approximations of association probabilities 
corresponding to the values of k  between  

5.0k1.0 ≤≤ , defined as excepted values of Poisson 
Distribution. 

Table 3 contains the results of MC 
experiments (the right column for every one gate 
threshold value) compared with the corresponding 
probabilities (the columns headed with Appr. - 
approximated), calculated by the heuristic formula  







 −=

G
k21II 0k ,   for   5.0k1.0 ≤≤ . (17) 

The results in this table, although not so 
precise as in the previous two tables, are comparatively 
good. Differences between analytical and experimental 
values are, in the worst case, in %5,2%5,1 ÷  
interval.  

 
6. Conclusions.  
 
In the presented paper an analytical approach 

is established for investigation and evaluation the 
association probabilities in the case, when nearest 
neighbor rule is used. Derived expressions (11) and 
(14-16), as well as the recurrent formula (13) give us 
possibility to estimate the implementation boundaries 
when using mentioned above rule in different specific 
cases replacing the time consuming exhaustive Monte 
Carlo simulation. Even though not so precise as 
expressions (14-16) heuristic formula (17) is derived 
for calculating association probabilities in the cases 
when the false alarms are not exact whole numbers. 
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