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1 Introduction 

The most complicated case in target tracking is undoubtedly to track multiple 
manoeuvring targets in heavy clutter. Numerous methods and algorithms have been 
devoted to this problem and for any one of them pro and cons can be pointed out. For 
example, the theoretically most powerful approach for tracking multiple 
manoeuvring targets in clutter is known to be MHT method. This method, however, 
more often leads to combinatorial explosion and computational overload that restricts 
implementation of this method. In recent years, numerous papers have been devoted 
to algorithms, which are capable to compute a ranked set of assignments of 
measurements to targets. Such algorithms make MHT approach practically 
implementable for the first time. 

 Another, and much less complicated approach, especially for tracking manoeuvring 
targets is known to be Multiple Models (MM) approach. The most promising 
algorithm based on this approach is Interacting Multiple Models algorithm. At the 
price of some suboptimality of its frame, this algorithm reaches the best 
implementation in terms of speed and stability. When assuming clutter, however, the 
IMM algorithm most often fails. In the case of cluttered environment, the PDA (and 
JPDA) approaches can be implemented. When tracking multiple closely spaced 
targets, the JPDA algorithm can be implemented successfully even in the presence of 
heavy clutter. In the previous paper1, we have proposed an algorithm unifying at the 
same time features of IMM and JPDA algorithms. This algorithm proved to be good 
alternative of MHT approach for clusters containing up to 4 targets and moderate 
level of clutter. When the number of targets in the cluster exceeds this limit, 
however, the total number of all feasible hypotheses increases exponentially. In this 
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paper we propose an extension of the algorithm in [1] where instead of enumeration 
of all feasible hypotheses we use ranked assignment approach to find the first K-best 
hypotheses only. The value of K has to ensure that the weight of scores-sum of this 
K-best hypotheses prevail over the total sum.  

This paper is organized as follows. In the next section we expose our motivation for 
this paper as well as the problem formulation. Here a brief outline of IMM_JPDA 
algorithm is given and the need of its extension is discussed. In the 3rd section the 
extended algorithm is described. Here the stress is made over the extension part of 
the algorithm. In the last, 4th section simulation results are presented. These results 
reveal that the extended algorithm shows better performance than cited IMM_JPDA 
algorithm in terms of speed while at the same time keeping its stability of tracking. 

2  Motivation and Problem Formulation 

When several closely spaced targets form a cluster, the JPDA algorithm starts to 
generate all feasible hypotheses and to compute their scores. The set of all feasible 
hypotheses includes such hypotheses as ‘null ’ hypothesis and all its ‘derivatives’ . 
Consideration of all possible assignments inclusive the ‘null’ assignments are 
important for optimal calculation of assignment probabili ties6. If, for example, the 
score of every one of these hypotheses differs from any of the others by no more than 
an order, it should not be possible to truncate some significant part of all hypotheses. 
If, however, prevail ing share of the total score is concentrates in a small percent of 
the total number of all hypotheses, then temptation to consider only this small 
percent of all hypotheses becomes very high. 

In order to investigate this idea a typical example with five closely spaced targets is 
used with overlapping validation regions and shared measurements. In the first run 
(1st scenario) 17 measurements are disposed in the target gates, and in the second run 
(2nd scenario) 9 measurements are disposed. At every run all feasible hypotheses are 
generated and their scores are computed and sumarized. The results are given in the 
figures below (Figure 1 and Figure 2). These two examples are chosen out of 
numerous experiments as typical one. 
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Figure 1. Hypotheses’  score distribution.          Figure 2 Cumulative score 

distribution. 

Two plots of Figure 1 show how the individual scores of the sorted feasible 
hypotheses are distributed. On the figure only first six percents of all hypotheses are 
depicted for the first end second scenario. It can be seen that the scores of the 
hypotheses dramatically reduce their values. Even more informative is Figure 2, 
where the cumulative score’s distributions of the two scenarios are given. This figure 
confirms our expectations that only littl e number of all hypotheses concentrate the 
prevailing part of their total sum. And an additional conclusion can be derived. The 
first scenario is much more complicated with more than 4930 hypotheses generated. 
In the second scenario the generated hypotheses are approximately 550. It can be 
seen from the figures that for the more complicated cases the expected effect stands 
out more definitely. 

Next, description of proposed in [1] algorithm follows. For simplicity and without 
losing generality two models are assumed.   

2.1  IMM-JPDA Algorithm Description 

The IMM JPDA algorithm starts with the same step as IMM PDA algorithm5, but in 
cycle for every particular target in the cluster. 

Step 1.  Computation of the mixed initial conditions t0
ix̂  for every target  i   

and for the filter, matched to model  t: 
a) mixed state estimate 

( ) ( ) ( ) 1111ˆˆ
2

1

0 ∑
=

−−−−=−−
s

i
ts

s
i

t
i kkkkx1k1kx µ       t=1,2                  (1) 

Here, it is supposed that mixing probabiliti es  i
tsµ   are already computed. 

b) mixed covariance estimate 
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Here  s
iP  is covariance update of model s for target i. 

Next, some JPDA steps follows.  

Step 2.  State predictions ( ) ˆ0 1kkx t
i −  and covariance predictions 

( )10 −kkP t
i  for the next scan k for every target and for every model are calculated.  

Step 3.  In this step, after receiving the set of measurements at scan  k, a 
clustering is performed. Further on, it is assumed that the algorithm wil l proceed with 
every particular cluster. 

At this point, in the traditional JPDA algorithm, hypotheses generation have 
to be performed. However, to avoid combinatorial explosion we include here our 
innovation. 

Step 4. Calculating  ‘predicted model probabili ties’ : 
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where  ( )1kt
i −µ   is probabilit y that of model t is correct at scan (k-1) and  pst  are 

Marcovian switching probabiliti es. 

Now, the individual model state predictions are merged for every particular 
target: 
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Step 5.   We are now ready to continue with the hypotheses generation and 
hypotheses score computation. Hypotheses generation is another combinatorial 
problem, but it wil l be discussed in the next section.  

After generating all feasible hypotheses, hypothesis probabilit y is computed 
by the expression 
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where 
β  - is probability density for false returns, 
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T
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where HN  is the total number of hypotheses. 

Step 6.   In this step, association probabiliti es are calculated. To 

compute for a fixed i  the probabilit y  ijp   that observation  j  originates from track  

i   we have to take a sum over the probabili ties of those hypotheses in which this 
event occurs: 

( ), ∑
∈

=
jLl
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�= and  TN1i ,, �=    (7) 

where  jL   is a set of indices of all hypotheses, which include the event mentioned 

above, mi(k) is the number of measurements fall ing in the gate of target i,  and  TN  is 

the total number of targets in the cluster. 

Step 7.   After association probabiliti es computation, the JPDA algorithm 
continues as a PDA algorithm for every individual target. For every target the 
‘merged’ combined innovation is computed 
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Step 8.   This is the last step of our description. At this step, our algorithm 
returns to the multiple model case by splitt ing ‘merged’ combined innovation from 
the previous equation. For every individual target and for every particular model the 
combined innovations are computed: 
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The last few steps of this algorithm fully coincide with the well-known IMM PDA 
algorithm5 and will be omitted. 

3  Accelerating Extension to IMM JPDA Algorithm 

Our extension to IMM JPDA algorithm is directed to the most time consuming part 
of the algorithm which concerns hypotheses generation and their scores computation. 
If we take as a simple example a cluster with 4 targets and 10 measurements 
distributed in their validation regions (Table 1), the total number of all feasible 
hypotheses for this example approaches 400. When, however, the number of targets 
in the cluster exceeds 5 or 6 and there is more than 15 measurements in their gates, 
the number of all hypotheses to be generated reachess thousands. To avoid these 
overwhelming computations we propose the next trade-off: to take into consideration 
only little part of all feasible hypotheses with the highest scores and concentrating the 
prevailing share of the total score sum. 

Table 1. Indices of the measurements falling in the gates of corresponding targets. 
 

T1 T2 T3 T4 
0 0 0 0 
4 6 3 1 
8 7 4 2 

9 8 5 3 
  6 4 
  9  

In order to find out the first K-best hypotheses we use an algorithm due to Murty2 
and optimized by Miller3 et al. This algorithm gives a set of assignments to the 
assignment problem4, ranked in increasing order of cost. As a first step in solving this 
problem we have to define the cost matrix of the assignment problem. It can be seen 
that the score of any particular hypothesis (equation (5)) is an expression of 
multipliers. The score of every one feasible hypothesis (i.e. the probability of being 
true) can be calculated using a table similar to this in Table 1, but instead indices in 
the boxes of the Table 1 we have to put multipliers equal to probability of assigning 
the given measurement to the corresponding target (Table 2).  
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Table 2. Multipliers of the corresponding measurements. 

T1 T2 T3 T4 
( )DP1−β

0 

( )DP1−β
 

( )DP1−β
 

( )DP1−β
 D14

Pg  
D26

Pg  
D33

Pg  
D41

Pg  

D18
Pg  

D27
Pg  

D34
Pg  

D42
Pg  

D19
Pg  

D28
Pg  

D35
Pg  

D43
Pg  

  D36
Pg  

D44
Pg  

  D39
Pg   

Now, combining indices from Table 1 in an admissible manner, and so, generating 
every one of feasible hypotheses we can at the same time multiply corresponding 
elements from Table 2, obtaining the score of the so generated hypothesis (equation 
(5)). As it is well known feasibilit y of hypothesis means two important constraints: a) 
no target can create more than one measurement and b) no measurement can be 
assigned to more than one target.  

On the other side, every solution of the assignment problem represents a sum of 
elements of the cost matrix. We have to define this cost matrix in such way, that the 
value of every possible solution of the assignment can be potentiall y a score of some 
feasible hypothesis. Let us take logarithm from both sides of (5). From the left-hand 
side we obtain logarithm of hypothesis probabilit y, and, from the right-hand side, a 
sum of logarithms of elements from Table 2. This correspondence between 
multipliers in equation (5) and sum of their logarithms gives a hint of how to 
construct the cost matrix and to solve the problem mentioned above. 

We construct a cost matrix containing instead the elements of Table 2, their negative 
logarithms. If we find the optimal solution (in this particular case – the minimal) of 
assignment problem with this cost matrix it will be coincide with the hypothesis with 
highest probabili ty, i.e., both the optimal solution and the highest probabilit y 
hypothesis will connect the targets with the same measurements. The cost matrix of a 
cluster from Table 1 appears in Table 3. 

Table 3. The cost matrix of the example 

 f1 f2 f3 f4 z1 z2 z3 z4 z5 z6 z7 z8 z9 

T1 ln0 ×  ×  ×  ×  ×  ×  ln14 ×  ×  ×  ln18 ln19 

T2 ×  ln0 ×  ×  ×  ×  ×  ×  ×  ln26 ln27 ln28 ×  

T3 ×  ×  ln0 ×  ×  ×  ln33 ln34 ln35 ln36 ×  ×  ln39 

T4 ×  ×  ×  ln0 ln41 ln42 ln43 ln44 ×  ×  ×  ×  ×  
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where  

( )[ ]βDP−−= 1lnln 0  ,   [ ]Dijij Pglnln −= . 

The symbol  ×   in the matrix represents one and the same value with only 
requirement to be greater than the greatest element out of the set of elements denoted 
with  ln . In order to use any of the widespread assignment algorithms as well as the 
algorithm in [3] for finding the K-best hypotheses, the matrix from Table 3 have to 
be added up to square matrix filling in the remaining rows with the same value × . 
First four columns of the matrix in Table 3 corresponds to false measurements, i.e., 
assigning first row to first column (or the second row to the second column, etc.) 
means that there is not measurement originated from this target. The columns from 
five to thirteen represent the corresponding measurements falling in the validation 
regions of the targets.  

When algorithm for finding K-best assignments begins his work it will find K 
solutions of the problem with lowest sums of negative log-likelihood (or with highest 
probabilities). After receiving these K values their anti-logarithms have to be 
computed and so to obtain the K-best hypotheses probabilities. Next, these 
probabilities have to be normalized by equation (6), but now the sum is up to K: 
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Henceforth, this algorithm fully coincides with the algorithm described in the 
previous section, continuing with the step 6. 

Here arises a question of practical importance closely connected with the proposed 
approach: how many hypotheses K to be found out. When deciding the value of K 
we have to realise that this value, in some sense, has to be optimal. On one hand, the 
less is the value of K the fast will be the discussed algorithm. On the other hand, 
however, the small values of K can lead to distortion in assignment probabilities 
computation (equation (7)). This question will be discussed in the next section. 

4 Simulation Results 

We compare the algorithm presented in this paper with the same algorithm but 
without acceleration discussed in previous section (algorithm from [1]) These 
presented algorithms were tested extensively on variety of scenarios involving 
different number of manoeuvring and closely spaced targets and in presence of heavy 
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clutter. We construct a set of scenarios with 3,4 and 5 targets in a cluster and in 
presence of moderate and heavy clutter. The used scenarios are similar to scenarios 
from [1] where we look for the limit of IMM JPDA algorithm in terms of number of 
target in the cluster. 

The first step in preparing the common frame for testing is to decide how many K-
best hypotheses has to be generated. We mentioned in the end of the previous section 
that the value of K has to be, in some sense, optimal so that: a) to be small enough to 
ensure acceleration of the algorithm, and, in the same time, b) do not be so small that 
to give rise to distortion in computing assignment probabili ties. 

As it can be seen from Figure 1 the scores of feasible hypotheses decrease very 
rapidly and some 5-10 percents of them (Figure 2) cover more then 95 percents of the 
total score sum. However, as we know neither the total number, nor the total sum, we 
try to derive indirect criterion for determining the value of K. One possible 
expression can be 

( ) ( ) ( )nHnHnH ⋅<+− α1  

where  1<<α . Here with H(n) the probabilit y density of nth hypothesis to be true is 
denoted. This criterion however did not give stable results, because very often there 
are subsets of hypotheses with very close values of their scores, even in the 
beginning of the sorted hypotheses array. Another expression that proved to be more 
suitable is 

( ) ( )1HnH ⋅< α     (10) 

In order to tune experimentall y the value of  α  a range of experimental runs have 
been carried out. Every one run is performed with scenario with the same number of 
6 targets and 12 measurements but with  different reciprocal (relative) location. 
Averaging over 1000 runs the next results have been received: 

The first column of the Table 4 contains the different values of  α , the second and 
third columns contain respectively the mean and the largest number (worst case) of 
the first N-best hypotheses in accordance with (10). The fourth and fifth columns 
contain mean and lowest values of ratio of the total score sum of these N-best 
hypotheses. In opposite to the hypotheses’  number the worst case for this ratio is its 
lowest value. 
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Table 4. Number of hypotheses and ratio of the total score sum for different values of  
α  as per equation (10) 

α  Nmean Nwst Rmean Rwst 

0.05 32 506 0.7842 0.6185 

0.01 179 1510 0.9414 0.8587 
0.005 286 2074 0.9690 0.9184 
0.001 632 3350 0.9942 0.9784 

0.0005 779 3797 0.9973 0.9899 
0.0001 1082 4459 0.9995 0.9982 

Now, we can choose the most suitable value for  α . For example, if we choose the 
value of α = 0.005,  after summation of the first 286 hypotheses we ensure, as 
average, to reach nearly 97% of total score sum. If we take into account that the 
mean of the total hypotheses number for this experiment is 9780 we can make the 
conclusion, that choosing the value of  α = 0.005 we can generate and process the 
first 3% of all feasible hypotheses ensuring 97% of total score sum. Similar 
conclusions can be made for α  = 0.01. Consequent experiments confirm that the 
values 0.01 and 0.005  for  α   are equally appropriate. 

         

Figure 3. Three targets with crossing trajectories and Poisson parameter 
1V =β   for the left, and 2V =β  for the right picture. 

For testing the presented algorithm we construct a range of scenarios with increasing 
complexity in terms of  targets number and presence of clutter. The chosen scenarios 
include 3,4 and 5 targets with closely spaced and crossing trajectories (figure 3 and 
4). The included clutter have been modeled as a Poisson process with parameter Vβ , 

where B is spatial false alarm density and V  is validation volume: 



Ljudmil Bojilov, Kiril Alexiev  and Pavlina Konstantinova 

( ) ( )
!k

Vm

k m

eV
VmNP

k βββ
−

==  

For every scenario two levels of clutter have been tested: with 1=Vβ  - moderate 

clutter, and 2=Vβ .- heavy clutter. The receiving results can be summarized as 

follows: 

A. Scenario with 3 closely spaced targets.  

Table 4. Time per cluster in seconds for 3-targets scenario 

 All hypotheses computation 
/targets in a cluster/ 

First K-best hypotheses only 
/targets in a cluster/ 

 2 targets 3 targets 2 targets 3 targets 

Vβ =1 0.016 0.062 0.02 0.26 

Vβ =2 0.011 0.136 0.09 0.68 

Comparison with the algorithm where all feasible hypotheses are computed gives 
unexpected results – this algorithm spends less processing time. Obviously the 
program frame for finding out the first K-best hypotheses is heavy and unsuitable for 
simple cases. Even so, the both approaches give results far below the real time 
implementation threshold. 

B. Scenario with 4 closely spaced targets.  

Table 5. Time per cluster in seconds for 4-targets scenario 

 All hypotheses computation 
Targets in a cluster 

First K-best hypotheses only 
Targets in a cluster 

Targets in a 
cluster 

3 targets 4 targets 3 targets 4 targets 

Vβ =1 0.03 3.94 0.79 3.39 

Vβ =2 0.22 124.7 3.42 9.86 

It can be seen in this case (Figure 3) that when scenario become denser the results 
become comparable (especiall y for clusters with 4-targets) and for the most heavy 
case ( Vβ =2) the processing time for the first algorithm increases almost 

exponentiall y (Table 5). In the same time, the processing time for the new algorithm 
increases polinomially.  
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Figure 4. Four-target scenario with                  Figure 5. Five-target scenario with 
2V =β                                                              2V =β  

C. Scenario with 5 closely spaced targets.  

For this scenario (Figure 4) only the proposed algorithm has been tested. For the 
most dense case, when five closely spaced targets have to be tracked in heavy clutter 
we compute average time per scan  t=8.7 sec. But as it can be seen from the Table 6, 
when in a given scan all five targets fall into the cluster the processing time become 
twice the average time. It can be stated that this case is the limit of algorithm 
implementation. 

Table 6. Time per cluster in seconds for 5-targets scenario 

 First K-best hypotheses computation 
Targets in a cluster 

Targets in a 
cluster 

3 targets 4 targets 5 targets 

Vβ =1 0.35 1.16 8.2 

Vβ =2 1.58 6.36 15.4 

5 Conclusions 

In this paper a new algorithm is presented for tracking closely spaced targets in 
moderate and heavy clutter. The algorithm is improved version of an algorithm 
previously presented by the authors. In the new algorithm instead of all feasible 
hypotheses only part of them are generated. By means of an algorithm for finding the 
first K-best solutions of the assignment problem we generate the firs K-best feasible 
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hypotheses in terms of their probabilit y of being true. This trade-off do not lead to 
observable assignment probabilit y degradation and in the same time definitely 
speedup the algorithm processing. 
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Abstract. Theoretically the most powerful approach for tracking multiple targets is known to 
be Multiple Hypothesis Tracking (MHT) method. The MHT method, however, leads to 
combinatorial explosion and computational overload. By using an algorithm for finding the K-
best assignments, MHT approach can be considerably optimized in terms of computational 
load. A much simpler alternative of MHT approach can be the Joint Probabil istic Data 
Association (JPDA) algorithm combined with Interacting Multiple Models (IMM) approach. 
Even though it is much simpler, this approach can overwhelm computations as well. To 
overcome this drawback an algorithm due to Murty and optimized by Miller, Stone and Cox is 
embedded in IMM-JPDA algorithm for determining a ranked set of K-best hypotheses instead 
of all feasible hypotheses. The presented algorithm assures continuos manoeuvre detection and 
adequate estimation of manoeuvring targets in heavy clutter. This results in a good overall 
target tracking performance with limited computational and memory requirements. The 
corresponding numerical results are presented. 
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