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Abstract—During the last few years microminiaturized inertial 

sensors were introduced in many applications. Their small size, 

low power consumption, rugged construction open doors to many 

areas of implementation. The main drawback of these sensors is 

gyro drift, leading to an unavoidable accumulation of errors. In 

the paper an approach is proposed to diminish error 

accumulation. 
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I.  INTRODUCTION  

Inertial Measurement Unit (IMU) consists from one or 
more sensors, measuring the change of kinematic energy of a 
moving body. The sensors are divided in two groups: gyro 
sensors and accelerometers. Gyro sensor gives rotation rate of 
the body. Accelerometer provides information about linear 
acceleration of the body. Usually description of 3D motion of a 
body is given by 3 orthogonally placed accelerometers giving 
transition dynamic of the body and 3 orthogonally placed gyro 
sensors determining the orientation of the body. The axes of the 
both types of sensors normally coincide – e.g. in a 3D 
orthogonal coordinate system there are sensors to measure 
linear accelerations on each of the axes and rotation rate of the 
same axes. Thus the calculation process is also simplified. Two 
type of IMU were realized in the years. The first one is a 
classical gyroscope, which preserve one and the same (initial) 
position, remaining independent of body movement. The real 
orientation of the body is measured as a difference between 
gyroscopes axes orientation and present orientation of the body 
- its roll, pitch and yaw. The second one, called also strap-down 
gyro sensor, is fixed tightly on the body and provides 
measurement of rate of rotation of the body. Usually the strap-
down sensors are produced as a MEM device with extremely 
high robustness and low power consumption. In this work such 
a type of devices will be considered. The body attitude is 
calculated using simultaneously the measurements of 6 sensors. 
Body orientation is given by integration of gyro sensors 
measurements. Transition of the body is calculated by double 
integration of accelerometers readings, according current body 
orientation. The integration process quickly accumulates errors. 
Due to existence of almost constant gravitational acceleration 
even small errors in the estimates of orientation of the body 
cause big deviation in the decomposition of gravitational 
acceleration on the axes, leading to large scale of attitude 
errors. Due to the quality of sensors IMU are divided in four 
groups of class of accuracy [1]: 

TABLE I.  ACCUMULATED ERROR DUE TO ACCELEROMETER BIAS 

ERROR 

Grade 
Accel. Bias Error 

[mg] 

Horizontal Position Error [m] 

1 s 10 s 60 s 1 hr 

Navigation 0.025 0.00013 0.012 0.44 1600 

Tactical 0.3 0.0015 0.15 5.3 19000 

Industrial 3 0.015 1.5 53 190000 

Automotive 125 0.62 60 2200 7900000 

TABLE II.  ACCUMULATED ERROR DUE TO ACCELEROMETER 

MISALIGNMENT 

Accelerometer Misalignment [deg] 
Horizontal Position Error [m] 

1 s 10 s 60 s 1 hr 

0.050 0.0043 0.43 15 57000 

0.10 0.0086 0.86 31 110000 

0.50 0.043 4.3 150 570000 

10 0.086 8.6 310 1100000 

TABLE III.  ACCUMULATED ERROR DUE TO GYRO ANGLE RANDOM 

WALK 

Grade 
Gyro Angle Random 

Walk [deg/√hr] 

Horizontal Position Error 

[m] 

1 s 10 s 60 s 1 hr 

Navigation 0.002 0.00001 0.0001 0.0013 620 

Tactical 0.07 0.0001 0.0032 0.046 22000 

Industrial 3 0.01 0.23 3.3 1500000 

Automotive 5 0.02 0.45 6.6 3100000 

 
As it can be seen from Table I, Table II and Table III, even 

small errors in gyro angle estimation may discredit navigation.  

II. PROBLEM DESCRIPTION 

The body motion in an inertial coordinate system can be 
described by following equation:  
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 denotes the vector of attitude coordinates in inertial 

coordinate system; g


 is gravitational acceleration, regarded 

constant for the time and space of the body movement; ia


 is 

acceleration vector of forces, influencing the body, adjusted to 



inertial coordinate system; 0r


 is the initial body attitude in 

inertial coordinate system at time t=0. 

The body space orientation can be described accordingly:  
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where 0


 denotes the initial body orientation in inertial 

coordinate system at time t, i


 is the vector 3D rate turn, 

adjusted to inertial coordinate system. 

The goal of navigation is to find coordinates of a body and 
its orientation. In the case of IMU sensor the task is solved 
based on IMU measurements and integral equation (1) and (2). 
A simple algorithm for coordinate determination is presented 
below. The calculation scheme is based on Euler angles. Let us 
denote the rotation matrix, transforming a vector from the 

moving body to inertial coordinate system by  tC i
b . Then an 

acceleration vector  tab  in the body coordinate system will be 

transformed to inertial coordinate system by (3): 

      tatCta b
i
bi   

Now the rotation matrix  tC i
b  will be represented by Euler 

angles [2]: 
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are the rotation matrixes that rotate vectors on angles  t , 

 t ,  t  on axes x, y and z. It is important to mention that the 

order of rotation is important. If the angles of rotation are 
sufficiently small: 

















0

0

0







t 

or in other words the measurement sampling rate is sufficiently 
high – satisfies Nyquist sampling rate, which guarantees that 
you capture a signal properly because you sample it at least 
twice per cycle of the highest frequency component it contains, 
the following substitutions for an angle  may be applied: 

1cos   and  sin . The product of small angles 

can be also approximated by zero: 0 . The final 

expression for the change in rotation matrix will be: 
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The final rotation matrix can be presented as a product of 
the rotation matrix at t  and calculated above rotation matrix

 tC i
b  , corresponding to small additional rotations, committed 

in time interval t : 
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Let now express the derivative of rotation matrix:  
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lastly received measurements of rotation rates from gyro 
sensors on corresponding axis. 

The solution of (7) is     
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The matrix exponent in solution can be presented as an 
infinite sum: 



























!!2!1!

2

0
k

I
k

k

k

 

Taking into account only the first two terms (linear 
approximation) we receive an approximate formula for 
recurrent calculation of rotation matrix: 
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b
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Let now calculate the exact expressions for angle 
derivatives. The differential equation (7) will be used, where 
the rotation matrix from (4) in explicit form will be substituted:  
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The matrix equation will be resolved for matrix element 
(3,1) (3-rd row, 1-st column). The corresponding equation 
looks like: 
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For matrix element (3,2) we receive: 
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Substituting   from (11) into (12) and expressing   we 

receive: 
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To find the expression for   the equations have to be used 

for matrix elements that contain  . For example, if the 

element (1,1) is used: 
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The equation (11), (13) and (15) are most often used for 
calculation of rotation angles between two successive gyro 
measurements with a linear approximation only.  

Let now consider errors in sensor measurements. 

The error propagation for acceleration sensors only looks 
like: 
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Here a


 denotes the error vector of acceleration sensors. 

The error propagation for gyro sensors only looks like: 
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Here 


 denotes the error vector of gyro sensors. 

The equations (16) and (17) give error propagation in the 
simplest case of independent errors. In practice there are many 
types of errors, influencing one to others. The influence of 
rotation rate error measurements on angle determination is 
obvious from (11), (13) and (15). As a consequence the error 
propagation in (17), for example, generates/induces nonlinear 
errors in estimation of accelerations, leading to quickly 
growing errors in estimated system position. That is why (16) 
and (17) are used only to approximate the order of generated 
errors and are not of practical use. 

The sensors are subject to different types of errors due to 
sensor imperfectness, model inaccuracy or computational 
errors.  

The main errors influencing on the attitude estimation 
accuracy may be grouped into three categories [3, 4]: 

A. Sensors do not provide perfect and complete data. 

 Bias errors produce constant or almost constant shift of 
sensor values from the true ones.  

 The scale factor errors cause lack of correspondence 
between real turn velocities and real straight linear 
accelerations and output sensors readings (gyro and 
accelerometer correspondingly).  

 Errors due to manufacturing imperfections in IMU. 
Usually they are caused by non-orthogonally placed 
accelerometer or gyro sensors on the chip or by lack of 
coincidence between axes of corresponding 
accelerometer and gyro sensors. The last error more 
often is initiated by the first one, but sometimes can 
exist alone.  



 The sensors readings are also contaminated by additive 
Gaussian noise.  

 Temperature dependent errors. Temperature deviation 
affects output readings.  

 There is time synchronization problem. Sensors 
readings do not belong to one and the same moment of 
time.  

 Dynamic error (lag of sensor reaction/response to force 
implementation).  

B. Imperfectness of the used models and computational 

arithmetic  

 The model inaccuracy usually is caused by inexact 
sensor approximation, incorrect gravitational 
acceleration estimate.  

 The computational errors are caused by limitations of 
computer arithmetic, iterative procedures for 
optimization, calculations of trigonometric functions, 
loss of orthonormality of matrices, etc.  

C. External sources of disturbances (uncontrolled, 

unpredictable even unknown sources of different type 

disturbances) 

 Platform vibration. The vibration counteracts to sensor 
accuracy. It depends of different random factors, 
platform dynamics, mass distribution, switching on/off 
of different devices, and etc.  

 Others 

The Fig. 1 below displays the influence of different types of 
errors on quality of attitude estimation.  

 

Figure 1.  Errors in an IMU 
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In order to minimize different type of errors we have to 
estimate their influence on the position estimate. 

There are many well established methods for self-
consistency check and normalization. One of them concerns the 
rows/columns of the rotation matrix. The rotation matrix is 
direction cosine matrix, which row/columns are projections of 
unity vector onto orthogonal axes. That means, that the sum of 
squares of values in each row/column have to be equal to 1 and 
due to their orthogonality, their scalar products have to be zero. 
In the cases of using quaternions the normalization means that 
the sum of squares of quarternion elements has to be equal to 1. 
This normalization usually doesn’t correct errors. Even if 
optimization procedure is started, the best received result does 
not guarantee the error compensation. Moreover, it usually 
propagates the error over correct terms. That is why the precise 
error expression is not of practical use.  

III. THE PROPOSED ALGORITHM FOR ERROR PROPAGATION 

MINIMIZATION 

The IMU sensor systems have unavoidable sources of 
errors. Through normalization and orthogonality checks the 
error propagation can be only slightly enhanced, if ever. The 
effect is most often dilution of the errors on all variables. To 
stop the process of error accumulation we have to stop the 
process of integration/double integration and reinitialize 
calculations. We cannot do permanently that because of need to 
estimate platform position. To minimize integration time we 
will discover motion of the platform and only when the motion 
is detected the integration process will be switched on. When 
there is no motion detected, the integration process will be 
stopped and the platform orientation and position will remain 
the same. This idea is not new one. For example, in the 
embedded software on newest MEMS an activity threshold is 
inserted for acceleration sensors. Only accelerations, exceeding 
threshold, switch on the flag “Activity”. In spite of its 
simplicity the realization of this functionality gives the system 
engineers knowledge when to initialize the sensor or when to 
start recalibration procedure. In this work we develop this idea 
further. We realize more precise algorithm for activity 
detection, which is less susceptible from the sensor signal bias.  

Two different types of change can be distinguished. 

“Abrupt” change is an instantaneous change in the parameters 

of the system. Here instantaneous change means that the 

transition from one to other state is committed faster with 

respect to the sampling period of the measurements. The 

second type of change is “slow” change. We are interested in 

detection of both types of change, independent on magnitude 

value of the change. Moreover, IMU measurements 

characterize usually with small and not necessarily fast – 

changes. 

Change detection may be statistically formulated as a 

random process, which statistical parameters change 

significantly at a point, called change point. To estimate 

statistical parameters, an interval with sufficient length has to 

be considered. The change point divides the time-series data of 

two parts with different distribution characteristics. The 

change detection problem may be resolved by model based 

change detection algorithms or by model-free algorithms. 

Typically model-based approaches decompose time-series 

data into trend, periodical data and residual components. For 

navigation purposes the model-based approaches are not 

suitable due to their complexity and lack of general models. 

The model-free algorithms deal with data values directly. One 

of the most popular representatives of this type of algorithms 

is CUSUM [5]. Page, the author of CUSUM, examined a 

"quality number", by which he denotes a parameter of the 

explored probability distribution; for example, the mean. The 

devised recursive procedure calculates a cumulative sum and 

compares it with a threshold. To detect the exact point of 

change, Page defined also the average run length as the 

expected number of processed measurements before action is 

taken. Usually, model-free change detection algorithms are 

computationally simple, more robust in comparison with 

model-based ones. 
The applied in this paper change detection algorithm is 

based on Shewhart control chart [6]. Due to many types of 
error sources, influencing on sensor data, it is assumed that the 
time-sequences from inertial sensors can be represented as a 
signal disturbed by additive Gaussian distributed noise. It can 
be considered that any change in dynamic of the examined 
platform leads to a change in the output data of one or more 
strapdown inertial sensors. We are looking for a change of the 
mean of a sample with length equal to N by the following 
sufficient statistic [6]: 
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The change is detected when the inequality is fulfilled: 
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The tuning parameters of the procedure are m and N. The 
procedure is applied on the time-series from the all six inertial 
sensors – three gyros and three accelerometers. The output 
results are fused in a final time-series with two states only – 
“0” and “1”. “Zero” means to stop integration of sensor output 
data and remains in the same state (the same position, velocity 
and acceleration) and preserve the same orientation of the 
platform in the space. When “One” appears for the first time 
the integration process is restarted and a new state vector and a 
new orientation of the platform are calculated.  

IV. EMPIRICAL RESULTS 

The algorithm was tested on a platform with MPU-6050 

strapdown inertial sensors. The platform commits a simple 

move following contours of a quadrate with a side, equal to 10 

cm. The data flow from 3 gyros and 3 accelerometers were 

saved and two types of algorithm were applied. The calculated 

platform trajectory received by standard navigation algorithm 

(without activity detection) is shown on Fig. 2. 

http://www.invensense.com/mems/gyro/mpu6050.html


 

Figure 2.  The reconstracted platform trajectory without change detection 

The raw gyro and accelerometer signals are presented on 

Fig. 3 and Fig.4. 

 
Figure 3.  Gyro raw signals 

 

Figure 4.  Accelerometer raw signals 

On the Fig. 5 the change detection algorithm is illustrated. 

The first graphic depicts one of accelerometer signals, where 

change detection algorithm is applied on (second graphic). 

The Fig. 6 shows the fused (from all six sensors) result from 

change detection algorithms with reconstructed trajectory 

(Fig.7). 

V. CONCLUSION 

The contemporary strapdown inertial MEMs are far behind 

in accuracy from the precise, very heavy and costly navigation 

platforms. In spite of this a lot of applications are waiting for 

more precise inertial sensors. The implementation of change 

detection algorithms enhances the accuracy of inertial MEMs 

and open door for realization of some of the ideas. The main 

drawback of the proposed change detection algorithm, which 

has to be considered, is the very small changes. They are 

neglected in the process. Or, nothing better than one accurate 

sensor! 

 

 

Figure 5.  Application of change detection algorithm on a raw signal 

 

Figure 6.  The fused result from change detection algorithm 

 

Figure 7.  The reconstracted platform trajectory with change detection 

ACKNOLEDGEMENT 

The research work reported in the paper is partly supported 

by the project AComIn "Advanced Computing for 

Innovation", grant 316087, funded by the FP7 Capacity 

Programme (Research Potential of Convergence Regions) and 

by the project No DFNI – I01/8 funded by the Bulgarian 

Science Fund. All data, laboratory equipment were supplied 

by “MM Solutions” in the framework of the project “Industrial 

research for development of technology for image 

enhancement and video stabilization using inertial sensors”, 

Contract BG161PO003-1.1.06-0037-C0001, Operational 



Program "Development of the Competitiveness of the 

Bulgarian Economy". 

REFERENCES 

[1] http://www.vectornav.com/index.php?&id=76 

[2] David H. Titterton, John L. Weston Navigation Technology - 2nd 
Edition, The Institution of Electrical Engineers, 2004, ISBN 0 86341 
358 7 

[3] Grewal, M.S., Weill L.R., Andrews A.P., Global Positioning Systems, 
Inertial Navigation, and Integration, John Wiley & Sons, 2001, ISBN 0-
471-20071-9. 

[4] Oliver J. Woodman, An introduction to inertial navigation, Technical 
Report UCAM-CL-TR-696, ISSN 1476-2986, 2007. 

[5] Page, E. S., Continuous Inspection Scheme, Biometrika 41 (1/2), pp. 
100–115, 
http://www.jstor.org/discover/10.2307/2333009?uid=3737608&uid=2&
uid=4&sid=21101894206801 JSTOR 233300 

[6] Michele Basseville, Igor V. Nikiforov, Detection of Abrupt Changes: 
Theory and Application, Prentice-Hall, Inc, ISBN 0-13-126780-9, 1993. 

 

 

http://en.wikipedia.org/wiki/JSTOR
http://www.jstor.org/stable/2333009

